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Symmetrical WENO-7 schemes for hyperbolic conservation
laws

Rooholah Abedian

Abstract. The aim of this work is to prepare a symmetrical WENO-n (SWENO-7) scheme in the
framework of the finite volume for hyperbolic conservation laws (HCL). The SWENO-7 scheme is
a convex combination of a fifth degree polynomial with two third degree polynomials. This fifth-
order SWENO-7 scheme uses the same stencil as the traditional WENO proposed by Jiang and
Shu (WENO-JS), could get less absolute truncation errors, and obtain the same accuracy order in a
smooth region. The SWENO-7 scheme has advantages over the WENO-JS scheme in its simplicity
and easy extension to higher dimensions.

1. Introduction

Consider the 1D hyperbolic conservation laws
up + f(u), = 0. (1.1)

An initial condition wuy(x) = u(z,0) is given along with appropriate boundary conditions. Despite
the smoothness of ug(x), the solution to (1.1) may develop a discontinuity within a finite time. High
order numerical approximations of the developed discontinuity suffer from the Gibbs phenomenon
yielding spurious oscillations near the discontinuity. Nowadays, the classical WENO by Jiang and
Shu [2] is the basis of other methods [1,3], since it is one of the most powerful numerical methods that
can successfully deal with the Gibbs oscillations. In this paper, a simple type of the symmetrical
ENO/WENO methods is presented. ENO schemes for solving Eq. (1.1) are derived in a semi-
discrete form. Thus, first a uniform spatial grid where the cell I; = [1:].7 1T, | has width Az is

considered. Assuming u; = ﬁ J; u(zx,t)dz, the semi-discretization formula is derived as
J

daét(t) - —ﬁ(f(u(xﬂ; t)) — f(u(z;_

3 )

1)) (1.2)

For computing flux f(u) at point z we require a reconstruction polynomial, which is described

it3’
. . . r _ . r _ — +

in the next section. The numerical flux fj+% = f(u(xj+%,t)) is computed by fj+% = h(uj+%,uj+%)
such that, h is the Lax-Friedrichs monotone flux. Details on how to form SWENO-n are provided
in section 2. The numerical results of the new scheme are presented in section 3.

Keywords: Symmetrical WENO-7 scheme, finite volume framework, conservation laws.
AMS Mathematical Subject Classification [2010]: 65M08, 35L65.
VY
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2. Symmetrical WENO-7, schemes

SWENO-7 for HCL

Now, we explain in brief how symmetrical WENO-7 method is derived to solve Eq. (1.1).
step 1. By considering the big stencil S = {I;_a,...,Ij12}, the fifth degree reconstruction polyno-
mial p; can be easily obtained by

5 i—1 i—1
pl(x) :ZU[mjfga o 7:1;]'7%4»1] Z (.’E -y 3+l)
i=1 m=01=0,l£m
. . (2.1)
+Ulzj s, 545,24 H (x—z;_s4),

where U[] is a divided difference of the function U(z) = [*__ (&, t)d€. Choose another two smaller
stencils: Sy = {Ij_2,1j_1,1;} and So = {Ij,Ij41,1j42}. It is easy to get the two third degree
polynomials as

3 i—1 i—1
pr(7) :ZU[ngrfé"" 71‘]77’4’17%] Z (z J r+lfl)
i=1 m=0 l=0,‘l;£m (22)
3 3
+ Uzt T g3, ) H (x—m;_yy_1), 7=0,2

The divided difference Uz z;] of Egs. (2.1) and (2.2) is calculated by

J-r+3

U[wjr+g,wj}:j(/_' u(g, t)de / 5td£> > / 7ZLj<x)xJ»<x>dw, (2.3)

where A = z; — Tjpys and x;(x) is the characteristic function of the cell I;. To complete Eq.

(2.3), a polynomial is needed that retains the information in the cell I;, therefore, similar to the
Nessyahu and Tadmor (NT) scheme, the polynomial L;(z) = u; + (z — :Ej)ﬁu; is applied, where
the numerical derivative u; is obtained by the uniformly non-oscillatory (UNO) limiter. By placing
Lj(x) in Eq. (2.3), the following equation is explicitly obtained

1

1
j—’l"-i—%’xj] 5_2,,,,( (r2 _r_2)uj+1 +(7" —37'+2)U]+2+

Ulz 1Y u}),

r=0,2. (2.4)
step 2. Compute the smoothness indicators ,, which measure how smooth the polynomials
pr(z) are in the target cell I;. The polynomials are smoother in I;, if these smoothness indi-
cators be smaller. The smoothness indicator associated with each stencil is computed as follows
Br = &| L1 yu| + |Layul, 7 =0,1,2, where the operators Ly, ;u are the generalized undivided differ-
ences. The number £ = 0.1 is a parameter which is to balance the tradeoff between the accuracy
around the smooth regions and the discontinuous regions.

step 3. Calculate the non-linear weights based on the linear weights d, and the smoothness indi-
cators. The main idea is here to construct a global smooth measurement, we define a variable n as
n = |Laou+ Lo ou — 2L271u|2. We define the new non-linear weights as

such that o, = d,(1+ ﬁ), s,r€{0,1,2}. (2.5)

Wy = ar
T Zas?

s

step 4. The final approximations at the boundaries of each cell are given by

1 do do
UL% = wopo(T;41) + wl(apl(xji%) - @Po(ﬂﬁji%) - d*1p2(90ji%)) +wapa (1) (2.6)
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For linear weights any convex combination can be considered. Accordingly, we make the choice:
do =dy = %,dl = g.
step 5. The semi-discrete scheme (1.2) is discretized in time by the Runge-Kutta method, such as
a fourth-order one [2].

A sufficient condition for the weights w, to have the fifth-order accuracy is given as w, — d, =
O(Az*) [2]. The next proposition verifies that the non-linear weights (2.5) fulfill the sufficient
condition even near the presence of the critical points.

Proposition 2.1. The non-linear weights w, satisfy the relation |w, — d,| < Ax*, even at critical
points, where d,. with r = 0,1,2 are the linear weights with dy + dy + do = 1.

Proof. The Taylor’s expansion of 5, with » =0,1,2 and 7 are

2

E}Axuﬁl - 2—2A 3 (3)1 | 4 |Az? u gAa:Bu(.g’)l\ + O(Az?),

\A:cu(l)l —|— Az3 (3) \ + |Ax? u 1+ iAI u]+1| + O(Az),
o (2.7)

Bo = f\Axu(l) Jr Azdu@)l | + |Az? u'? + : + §Az‘3u§.i)%\ +0(Az?),

n=|- Ax3u§.i)l + (9 Azt = Az (A + O(Az?)).
If o 1 = = 0 and uj , # 0, therefore B, + Az? = CAz%(1 + O(Ax)), for some constant C' > 0.
2

Therefore, we obtain ozr =d, (1 +3 +Aa:2) =d, (1 + (9(Am4)). The given condition dy +dy +do =1
and with a straightforward algebraic operation, it can finally be concluded that w, = ﬁ =
dr + O(Az*), which leads to the conclusion. O

3. Numerical results

The numerical results generated by SWENO-7 are compared with the classical WENO-JS [2].
Accordingly, we solve u; + (“—22)35 = 0, known as the inviscid Burger’s equation, with the initial
condition u(z,0) = 1 + 0.5sin(mz) and periodic boundary condition. When ¢ = 0.12 the solution
is still smooth, and the errors and numerical orders of accuracy by SWENO-n and WENO-JS are
shown in Fig. 1. We can see that both schemes achieve their designed order of accuracy, and
SWENO-n produces less truncation errors. Fig. 1 shows that SWENO-7 scheme needs less CPU
time than WENO-JS. Now, we consider the initial condition u(x,0) = 1 for |z| < 1/3 and u(z,0) =0
elsewhere. We end this problem with the solution on 80 cells in Fig. 1. SWENO-7 is sharper than
WENO-JS on the expansion wave and the shock.

—%— L, (SWENO-n)
~ % - L, (SWENO-n)
—e— L, (WENO-JS) 0.8
~ e L, (WENO-JS)

Log, (errors)

10! Log,(Cells) 107 0 CPU(Sec) 05 4 -0.5 0 0.5 1

Figure 1: Left: Computing time and error. Right: solution at t = 3.5/m2.
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Septic B-spline quasi-interpolation WENO schemes for
hyperbolic conservation laws

Rooholah Abedian

Abstract. In this work, a septic B-spline quasi-interpolation (SBSQI) based numerical scheme for
hyperbolic conservation laws (HCL) is proposed. To ensure the non-oscillatory profile of the solution,
an adaptive SBSQI (ASBSQI) scheme for HCL is considered. The ASBSQI method maintains higher
order accuracy in the smooth regions using SBSQI approximation and in the non-smooth regions,
the traditional WENO-JS method is used to preserve a non-oscillatory profile.

1. Introduction
For approximate solution of the 1D non-linear hyperbolic conservation law
Ut"‘f(“)x =0, (1'1)

with the initial condition u(z,0) = wg(x), high-resolution schemes are considered. The solution
of Eq. (1.1) may admit regions of sharp transition. Shocks may develop in the solution within a
finite time. Many methods such as spectral or finite difference methods fail to capture the solution
accurately in the regions where the solution has large variations or shocks. B-splines are employed
extensively in developing numerical schemes for partial differential equations, mainly because of their
better approximation properties as compared to polynomials. Consider the interval I = [a, b] to be
partitioned into m subintervals I; = [mj_l,a;ﬂ;], ji=1,2,...,mof equal length Az = Ti1—T; 1.
2 2 2 2
Let >, ={z;: 7 =1,2,...,m} denotes the set of partition points also known as set of knots
and S%(1,Y", ) denotes the (m + d)-dimensional spline space of degree d over the partition ), .
The set {B]‘-l : j=1,...,m+d} forms the basis of spline space S¢(I,Y, ), where Bf denotes the
B-spline of degree d. The septic B-spline quasi-interpolation is defined as Qqf = Z;n:id 1 ( f)BJd
where coefficient p;(f) is the linear combination of discrete values of f (see [2] for more details).

2. Adaptive SBSQI WENO scheme

This section briefly describes how to design ASBSQI-WENO scheme to solve Eq. (1.1).
step 1. By considering the big stencil S = {Ij_s,...,Ij2}, the fourth degree reconstruction
polynomial p can be easily obtained by considering the following condition

1
— dn=1t;, i=§—2,...,5+2. 2.1
Ay P = =2 (21)

Keywords: B-spline, finite difference methods, conservation laws.
AMS Mathematical Subject Classification [2010]: 65M06, 35L65.
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step 2. Identify the extreme points of p(z). Since the degree of p’(x) is at most three, therefore,
the real zero points of p’(x) can be explicitly solved and one is the extreme point of p(x) if it is not
a doubled zero point of p/(z).

step 3. Now if the extreme points of the reconstruction polynomial p(x) are outside the big stencil
S or there is no extreme point at all,

m-+5

w+ S w(f)B) =0, € ab] (2.2)
j=1

Using the notations f, = f(uy) and u, = u(xy,t) for x € >, , the above equation reduces to a
system of ODEs
AL

i=j—5

duy (1)
dt

where the coefficients by can be found from [2] and the procedure jumps to step 5.

step 4. Now if there is one or more extreme points in the big stencil S, the traditional WENO-JS
process proposed by Jiang and Shu [1] is applied as follows. The approximation of Eq. (1.1) leads
to system of ODEs by applying the method of lines, where the finite difference approximation is
replaced to the spatial derivative and yields a semi-discrete scheme

du;(t) | R A B
WO L - d) =0 24)

Here, fj 41 are called numerical fluxes. By defining a function h(x) implicitly as
2

x+%
f =5 [ hodn, (25)

_ Az
2

1 . . . .

we haAve fu)z|e=a; = E(h(acj+%) - h(x];%)), where h(xji%) is a approximation to the numerical

flux fj ;1. To ensure the numerical stability and to avoid entropy violating solutions, the flux
2

f(u) is splitted into two parts f* and f—, thus f(u) = f"(u) + f~(u) where W > 0 and

df;iqgu) < 0. The numerical fluxes fj 1 is obtained by Eq. (2.5) which are positive and negative

parts of f(u) respectively and with this we have fj 41 = fj':l + f];y The negative part of the
2 2 2

split flux, is symmetric to the positive part with respect to z therefore we will only describe

i1,
how f;r 1 is approximated. From here onwards, the ‘4’ Singl i2n the superscript is dropped for
simplicity. To construct fj +1s the traditional fifth-order WENO scheme employs the big stencil S
which is subdivided into three candidate sub-stencils Sy = {Ij+k, [j1x—1,lj+x—2} with &k =0,1,2.
Let f;’l 1= Zgzo Ck,qfj+k+q—2 be the second-degree polynomial constructed on S to approximate
h(mj " %) where the coefficients ¢, , are the Lagrange’s interpolation coefficients depending on the
shifting parameter k. The flux values on each sub-stencils can be seen in [1]. The convex combination
of the flux functions define the approximation to the value of h(z; 1 ) which is fj 41 = Zi:o wy f jk e

where wy, are the non-linear weights. The non-linear weights wy, are defined as

o dy,
wy — ————— o = —mm—
‘ 2 ’ e+ B

2.6
Zq:O Qq 20

VvV
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where 0 < € << 1 is considered to prevent the denominator becoming zero and the coeflicients dj
are known as the ideal weights because they generate the upstream central fifth-order scheme for
the five-point stencil S. The values of ideal weights are given by {dy,d;,d2} = {0.1,0.6,0.3}. Also,
B is a smoothness indicator which measures the smoothness of a solution over a particular stencil.
The suggested smoothness indicators ;. of Jiang and Shu are given by

dz

2 Fl
B = quAx?q—l /Ij(dqf)’% (2.7)

step 5. The semi-discrete scheme (2.4) is discretized in time by the Runge-Kutta method, such as
a fourth-order one [1].

3. Numerical results

In this section, the numerical results obtained by ASBSQI-WENO are compared with WENO-
JS [1]. Therefore, Eq. (1.1) with u = (p, pu, E) and f(u) = (pu, pu® + p,u(E + p)), known as Euler
equations, with two different initial conditions is considered. Here, p,u,p = 0.4(E — %qu) and
E are the density, velocity, pressure and total energy, respectively. The initial conditions are («)
(p,u,p) = (1+0.99sin(x),1,1) for z € [0, 27]; (B) (p,u,p) = (0.445,0.698, 3.528) for z € [0,0.5) and
(p,u,p) = (0.5,0,3.571) for x € [0.5,1]. For case «, periodic boundary conditions are applied and
the exact solution of p is p(z,t) = 140.99sin(x —t). In case 8, known as Lax problem, transmissive
boundary conditions are applied. The results of ASBSQI-WENO and WENO-JS for density are
shown in Table 1. Fig. 1 shows the numerical results of both schemes.

1.32
14 N TR TR T W WY TR PR PR VN VRN PR PR )
Exact 1.3 e
12| AsSBSQI-WENO 28
1| —*— WENO-Js '
1.26
08 1.24
0.6 1.22
0.4 1.2
0.2 1.18
0 0.5 1 074 076 0.78 0.8 0.82 0.84
0.15
0.5
0.45 0.1
0.4 1 0.05
035 Ly sttt
0
066 068 0.7 072 0.74 )

Figure 1: The Lax problem with N = 200. Top(left): the density. Top(right): the zoomed region of
the density. Bottom(left): the zoomed region of the density. Bottom(right): the points where the WENO
reconstruction procedure is used in the SWENO scheme “[1”.
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SBSQI-WENO schems for HCL

Table 1: L and L, errors and the order of convergence for case «.

WENO-JS ASBSQI-WENO

N Li-error Lj-order Ly.-error Lg,-order Li-error  Li-order Lo.-error Lo-order

40  8.64(-06) - 1.79(-05) - 5.08(-06) - 1.04(-05) -

80  2.87(-07) 4.91 5.74(-07) 4.96 1.07(-07) 5.57 5.36(-07) 4.28
160  8.89(-09) 5.01 1.87(-08) 4.94 6.00(-09) 4.16 1.57(-08) 5.09
320  2.90(-10) 4.94 5.57(-10) 5.07 2.53(-10) 4.57 5.44(-10) 4.85
640 8.68(-12)  5.06  1.74(-11)  5.00 8.25(-12)  4.94  153(-11)  5.15
1280 2.81(-13)  4.95  4.85(-13)  5.16 2.52(-13)  5.03  4.30(-13)  5.15
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Ty-eigenvalue of odd-order tensors

Mehri Pakmanesh, Hamid Reza Afshin

Abstract. In this paper, we propose a definition for eigenvalues of odd-order tensors based on
some operators. Also, we define the Schur form and the Jordan canonical form of such tensors,
and discuss commuting families of tensors. Furthermore, we prove some eigenvalue inequalities for
Hermitian tensors. Finally, we introduce characteristic polynomials of odd-order tensors.

1. Introduction

In 2010, Misha E. Kilmer introduced a notion of product for third-order tensors, and used it to
define an SVD decomposition and an approximation of the CP decomposition of such tensors. The
product has been widely used in many areas, including computer vision, image processing, signal
processing, data completion and denoising, low-rank tensor recovery, and robust tensor PCA. Due
to the importance of the T-product, some researchers have focused on third-order F-square tensors
and their properties [1]. Liu [1] defined T-eigenvalues based on the T-product of third-order F-
square tensors in 2021. Qi, Miao, and Wei in [2] presented the definition of generalized tensor
function according to the tensor singular value decomposition (T-SVD) based on the tensor T-
product. In [3], T-similarity, T-Jordan canonical forms, and T-eigenvalues of third-order F-square
tensors were introduced.

Our idea is to propose a product for all odd-ordered tensors. This is in fact a generalization of the
product introduced by Kilmer. Using this product, one can define a similar T-SVD decomposition,
which in turn can be utilized to approximate the CP decomposition of higher-order tensors

In this paper, we introduce Tjs-eigenvalues of odd-order tensors, and discuss their properties.
Moreover, we study commuting families of tensors, extend Weyl’s theorem and Cauchy’s interlacing
theorem from matrices to tensors, and introduce Schur and Jordan canonical forms for odd-order
tensors. Finally, we define T -characteristic polynomials.

2. The T),-product

An odd-order tensor A = (@i, iy, .. im.j1 2, jm,d) 15 & multi-array of entries

@iy g, simsjiojosgmd € C, where i = 1,...,nj for j =1,....m, jp =1,...,q; for k=1,...,m, and
d=1,...,p. Sometimes, we simply call n1 X ng X --+ X Ny, X q1 X g2 X -+ X gm X p the size of A.
We denote the set of all odd-order tensors by C™1x72%XTm Xq1Xq2X X qmXPp,

Definition 2.1. For A € Cmixn2xXNmXqxXqXXqmXP e |et,

AF) = A(oen k) € CMXmRX X im XX @ X X g

Keywords: Ty-product, Ths-eigenvalue, Tar-Schur form, Ths-Jordan canonical form, Odd-order tensor.
AMS Mathematical Subject Classification [2010]: 15A48, 15A69, 65F10.
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By transforming the indices, a tensor can be represented by a matrix which is called the matricization
of the tensor. For a tensor A(*) e Crixnex—xnmxqxq2xx¢m we introduce the matricization Ag\lf[)
which is an (n1ng...nm) X (q1g2 . . . ¢m) matrix defined by

Th-eigenvalue of odd-order tensors

(k) _
AM (d7 C) - ail7i27~~-7im7j17j27'~~jm7k7

where

-1 -1
d=1+3" (G-I ey, e=1+>20G—-1) 11 a-
I'=1 I'=1

The operators bcircys, unfoldys and fold,, are defined by

AL A Al AR
L oroas ) m A?f} A?} A Afjj) ’
AE\Z) Ag(}:_l) o AD Aé\l}

Al

unfoldys(A) := A?‘zf) ,

Ag’;)

and folds(unfoldys(A)) := A, which means that foldys is the inverse operator of unfold,;. It is
easy to check that these operators are bijective. Therefore, we also consider bci]rc]T/[1 as the inverse
operator of bcircyy, so that beircy; (beireps(A)) = A.

Definition 2.2. If A € CM*m2XXNmX@X@XXqmXP and B € CNX92X X qmXPp1Xp2XXPmXP  then
the Ths-product of A and B, denoted by A * B, is an ny X ng X -+ X Ny, X P1 X Pa
X +++ X pm X p tensor defined by

A * B = foldps(beircps (A)unfold s (B)).

Definition 2.3. Let A be an ny Xng X - -+ X Ny X q1 X g2 X -+ X @y X p tensor. The tensor AT is

aqrXqgoX- X @gmnXng Xng X XNy, X p tensor, obtained as follows. Transpose each Ag\lz,), and

then commute AE\? with AS\Z), ASS[) with AS\Z_D, and continue until the end. Also, the conjugate
transpose A* is obtained using the following procedure. Conjugate transpose each AS\Z), and then
commute Ag\? with Agﬁ), Ag\g/’[) with Ag\l/)[_l), and continue until the end.

Lemma 2.4. [f A € CmXnm2XXnmXq@xqexXXqmXpP gnd B € CU X492 XqmXPLxp2xX=XPmXP then, the
following hold.

(i) unfoldy;(A) = beircyy (A)EPTa2dm>a1dz.-am,
(ii) beiren (foldyy (beireyy (A) EPIa2-dm>az-dmyy — pejrey (A).
(iii) The operator bcircys is a linear operator, that is,
beireyr (oA + BB) = acbeireys (A) + Bbeirepr (B),

where A and B are of the same size, and o, 3 € C.
AR
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(iv) beirepr (A x B) = beirepr (A)beiren (B).

M. Pakmanesh, H.R. Afshin

(v) beireyr (AT) = (beireps (A))T and beirep (A*) = (beireps (A))*.

Definition 2.5. Suppose that A € CrXn2XXnmXniXnzX-XnmXp 0 c (Cr1XnzX:Xnm XIxX1x:x1xp
and X # 0. If
A*x X = AX, (2.1)

for some A € C, then A is called a T)s-eigenvalue of A, and X is said to be a Ths-eigenvector of A.
Lemma 2.6. The tensor eigenvalue problem in (2.1) is equivalent to the matrix eigenvalue system
beirepr (A)unfoldy; (X) = Aunfoldy; (X). (2.2)
According to Lemma 2.6, it is possible to calculate the Tys-eigenvalues and Thys-eigenvectors of

A by solving the eigenvalue problem of matrix beircys(A).

Now, we define symmetric and Hermitian tensors.

Definition 2.7. A tensor A € CMXn2XXnmXmxn2xX--XnmXp ig called symmetric if A=A, and it
is called Hermitian if A* = A.

Since Ths-eigenvalues of a Hermitian tensor A € C1Xm2x - XTm Xn1Xn2 X Xnm XpP gre real, we adopt

the convention that they are always arranged in the algebraically nondecreasing order, that is,
)\min = )\1 < )\2 <...< )\nlng...nmpfl < )\nlnz..‘nmp — )\ma:(;- (23)
In the following, we extened Weyl theorem for tensors.

Theorem 2.8. Let A, B € Crixn2XXnNmXnixneX-xXnmXP ho Hermitian tensors, and let the respective
T -eigenvalues of A, B and A+B be {X\;(A)}21> P {N(B) 27" and {\i(A+B) 272 "mP,
each algebraically ordered as in (2.3). Then

/\Z(.A + B) < Ai_:,_j(.A) + )\nlng...nmp—j<3); j=0,1,...,n1n2...nymp — 1, (2.4)
foreachi=1,2,...,n1n3...nmp, with equality for some pair i, j if and only if there exists a nonzero
tensor

X = foldy (Fyep, @ ) € Crxnaxxmmxixbxexxp, (2.5)
such that

A x X = N\ (A)X, B*X = Miing..nmp—j (B)X, (A4+B)*X=N(A+B)=*X,

where x € C™M"2-"m s the p x p discrete Fourier matriz, ey, is the k" column of the p x p
identity matriz, and 1 < k < p. Also,

foreachi=1,2,...,n1n3...nmp, with equality for some pair i, j if and only if there exists a nonzero
tensor X such that

AxX=N_ji1(A) X, BxX=N\(B)X,  (A+B)xX=X\(A+B)X,

where X is defined as in (2.5). If A and B have no common Ty-eigenvectors, then the inequalities
in (2.4) and (2.6) are strict.

Yy
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Perturbed extended second derivative backward
differentiation formula

Tahere Majidi, Ali Abdi, Gholamreza Hojjati

Abstract. The purpose of this paper is to study methods with super-future point technique from
second derivative general linear methods point of view, which makes it possible to have satisfactory
stability properties. We present one new general class of methods by perturbing the abscissa vector
of the modified extended second derivative backward differentiation formula, that can be considered
as modified second derivative linear multistep methods. Some numerical experiments confirm the
efficiency and robustness of the proposed method in solving stiff problems.

1. Introduction

Consider the stiff initial value problem

y'(t) = f(yt)), telto,T],
{ y(to) = yo, (1.1)

where f: R™ — R™ and m is the dimension of the system. One of the most popular directions to
construct methods with a good accuracy and desirable stability properties is using of super-future
point technique based on backward differentiation formula (BDF) and higher derivatives of the
solution [3]. Using this idea leads into extended second derivative BDF methods (ESDBDFs) [4].
Second derivative general linear methods (SGLMs) as a unifying framework for the traditional
numerical methods using second derivative of the solution [1,2]. The k-step ESDBDFs have the

general form [4]
k

> " @jynts = hBefurk + B (kbnsk — Tes10nk1)- (1.2)
j=0
The predictor was defined by second derivative BDF (SDBDF)

k—1
Ynik + Y OYnt = hBkfurk + D Vegn ik (1.3)
j=0
The algorithm based on ESDMM approach goes as follows:
(1) Compute 7, as the solution of the k-step SDBDF

k—1

_ - 2
Yn+k + Z AjlYn+; = hﬁkfn—i—k +h Ve9n+k> (14)
7=0
Keywords: Extended second derivative multistep methods, Second derivative methods, Second derivative general
linear methods , Stiff problems, A- and A(«a)-stability.

AMS Mathematical Subject Classification [2010]: 65L05.
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Perturbed extended second derivative backward differentiation formula

(2) Compute 7, 1 as the solution of the k-step SDBDF
k—2

Yntk+1 T Wk—1Yntk + Z it = POk ntier T W2 WTn ki1 (1.5)
=0

(3) Compute y,,+k as the solution of the k-step ESDBDF

k-1
Ynik + Y QjYnts = hBrfoik + B> (hdnik — Tkt 1Tnsks1)- (1.6)
=0

The stage (3) can be replaced by a modified ESDBDF (MESDBDF) as follows:

(3*) Compute y,,4x from (1.2) as the solution of

k-1
Yntk + Y GiYnti =h(Bk = Br) Pk + 1Bifatk + 12k — 1)Fnsk
=0

—B*A1Gn k1 + PV Gntk- (1.7)

2. A review on the SGLMs

SGLMs for the numerical solution of (1.1) are defined by
VI = h(A@ Ln) F(YI) + R2(A® Ln)g(V!) + (U @ L)y,
y" = h(B© L) [V + 2B @ 1)g(Y 1) + (V @ Ly, @1)

n=12,...,N, where Nh =T —tg and h is the stepsize, ® the Kronecker product of two matrices

and I,, stands for the identity matrix of dimension m. Here, the vector Y1 = [Yi[n]]f:l denotes

approximations of the stage order ¢ to the vector y(t,—1 + ch) = [y(tn—1 + ¢ih)];_, where ¢ =
[n]

[c1 co ... ¢5]T is the abscissa vector. Also yl*—1 = [yl[n_”]gzl and yl" = [y."]7_, are the input and
output vectors at the step number n, respectively. For more details on SGLMs, see [1,2].

2.1. MESDBDF as SGLMs

In order to represent MESDBDF as SGLMs, it is necessary to replace (1.4) into (1.5). Then
MESDBDF scheme can be written as SGLM (2.1) with three stages, k inputs and the abscissae

vector defined by
c=[k+1 kE+2 k+1]T. (2.2)

3. Perturbed MESDBDF

In this section, we perturbe the abscissa vector ¢ of the MESDBDF methods that will be called
modified second derivative linear multistep methods (MSLMMSs). Therefore, the resulting coefficient
vector takes the form

c=[k+1+&, k+1+&, k+1]7. (3.1)

Here, we investigate the stability properties of MSLMMs. The stability polynomial p(w, z) of these
methods can be taken the following form

1 i ,
p(w, z) = 1= ) ]z:%aj(z)wj, (3.2)

Yo



Univerity of Guilan

where each a;(z), j =0,1,...,k, is a polynomial of degree at most six in z, whose coeflicients depend
on the two parameters £; and &. We aim to find the optimum values for the free parameters &;
and & to maximize the angle a of A(«)-stability of the methods. By using the boundary locus
technique [5], we constructed an objective function

T. Majidi, A. Abdi, G. Hojjati

s

fn : (&1,&) — [0, §]~

We minimize objective function f,, by using fminsearch command from MATLAB. The values of
angle a of A(«)-stability of MSLMMs are reported and compared with MESDBDFs in Table 1.

Table 1: Angles a of A(a)-stability for MSLMMs and MESDBDFs for k = 5,6, 7, 8.

MSLMM MESDBDF
k & &2 P o p «
26 23
) @ —26@ 7 90° 7 89.86°
6 8968926 36312‘5) 8 90° 8 88.49°
7 @ — @ 9 §89.99° 9 85.43°
Zho ~ o082 10 89.85° 10 81.81°

4. Numerical experiments

We consider the linear stiff system

{ Y= —ayr — By2 + (a4 B —1)e” ", 11(0)
Yy =Py —ay+(a—B -1, 1(0)

(4.1)

L
0,

with the exact solution y1(t) = y2(t) = e~!. In our numerical experiments, we select o = 0.6,

B = 25. Numerical results in Table 2 show that MSLMMSs are more accurate than MESDBDEF.

Table 2: Computed error at the end of the interval of integration [0, 60] for MESDBDF and MSLMM
applied to problem 4.1.

h 0.1 0.05 0.025
MESDBDF | 1.10 x 102 3.84 x 10727  1.76 x 10723
k=7 MSLMM 5.12 x 10735 4.52 x 10731 5.97 x 10731
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Restricting the solution set of the interval linear systems
with multiple right-hand sides

Marzieh Dehghani-Madiseh

Abstract. In this work, we study the interval linear systems with multiple right-hand sides AX =
B and consider it as an interval linear matrix equation. Using the Kronecker product, this interval
matrix equation is converted to the interval linear system (I ® A)vec(X) = vec(B). Solution set of
the Kronecker form encloses the solution set of the main interval matrix equation AX = B. Thus
we try to impose some conditions which imply regularity of I ® A and so boundedness the solution
set of the main problem. The proposed conditions do not deal directly with the large interval matrix
I ® A and so in computational point of view are efficient.

1. Introduction

Some class of problems such as structural mechanics, computation of the frequency response matrix
and electromagnetic scattering naturally lead to solve several linear systems that have the same
coefficient matrix but differ in their right-hand sides, i.e.,

Az, 9, ... xn) = (b1,b2, ..., by).
These systems can be written in a matrix form
AX = B, (1.1)

therein A and B are m-by-m and m-by-n known matrices respectively, and X is the m-by-n un-
known matrix. Practically, components of A and B are obtained from experience, but due to
the measurement errors, theses components will accompany with some uncertainties which can be
presented in an interval form and so we will have the interval matrix equation

AX =B, (1.2)

in which A and B are interval matrices. The interval matrix equation (1.2) was studied by Hashemi
and Dehghan [3]. They presented some analytic results and characterizations for AE-solution sets
of this interval matrix equation. Dehghani-Madiseh and Dehghan [2] considered the parameterized
version of the equation (1.1), i.e., the parametric matrix equation A(p)X = B(p).
A first idea for dealing with the interval equation (1.2) is to convert it to the interval linear
system
Gz = b, (1.3)

Keywords: Matrix equations, Kronecker product, Interval arithmetic.
AMS Mathematical Subject Classification [2010]: 65G40,15A24.
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therein G = I ® A, x = vec(X), b = vec(B) and I stands for the identity matrix of order n. The
Kronecker product £ ® F of two matrices E and F' is the block matrix whose its (4, 7)-th block is
ei; F'. For X = (x;;) € R™*", the vector vec(X) € R™ is obtained by stacking the columns of X,
ie, vec(X) = (T11, -+, Tmls- o r Tlny -+ s Ton) |-

Here using regularity concept of the interval matrices, we present some conditions under which
the coefficient matrix I ® A is regular and besides the solution set of (1.2) is bounded. Advantage of
our idea is that we do not directly deal with the large interval matrix I ® A, since this matrix is of
high dimension specially when n is large. We just work with the main matrix A which considerably
reduces computational costs.

Restricting the solution set of the interval matrix equation

Notations. In this note, bold face letters denote interval quantities and ordinary letters stand
for real quantities. IR = {x = [x,X]| : x < X, Xx,X € R} is the set of real intervals and the set of
m-by-n real interval matrices is denoted by IR™*". For the real interval x = [x,X] define midpoint
2¢ = (X + x)/2 and radius 22 := (X — x)/2. The concepts of midpoint and radius for interval
vectors and matrices are defined componentwise. For a real matrix A, p(A) denotes its spectral
radius.

2. Our result

In this section using the same convention in [3], we first introduce the concept of solution set for
the interval matrix equation (1.2) and then using its Kronecker form we present some conditions
under which this solution set is bounded.

Definition 2.1. The solution set of the interval matrix equation (1.2) is defined as
Z(A,B)={X eR™":(3A € A)(3B € B)(AX = B)}. (2.1)
Let Z(G,b) be the solution set of (1.3) and define S as
S ={vec(X): X € 2(A,B)}, (2.2)

then it is obvious that S C Z(G, b). Therefore, by solving the interval linear system (1.3) using the
existing methods, we can specify the columns of the interval matrix X as an enclosure for Z(A, B).
But the enclosure of Z(A,B) is achievable if it is a bounded set. Here, using the Kronecker form
(1.3), we present some conditions for boundedness the solution set of the interval system (1.2).

Definition 2.2. The square interval matrix A is regular if each A € A is nonsingular.
Theorem 2.3. [1] Let G € IR™". If p(|(G)~!|G?) < 1, then G is regular.

Lemma 2.4. If A,C e R™*™ B, D € R"™" agnd X € R™*"  then we have
1. (A® B)(C® D)= AC ® BD, 2. (AeB) '=A"1® B!,

3. vec(AX) = (I ® A)vec(X), 4. M(A® B) = AN(A)A(B),

therein \(A) and A(B) denote the eigenvalues of A and B, respectively.

Theorem 2.5. Consider the interval linear system of equations (1.3). If p(|(A°)~'A®) < 1 then
G is reqular and the solution set Z(A,B) of the interval matriz equation (1.2) is bounded.

Proof. Since G =1 ® A, we have

G=I®AF°=Ix A" GA=I®A)>=I A%,
Y4
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So using Lemma 2.4 we can write

M. Dehghani-Madiseh

(G)7HED = (I @ A7) (T @ A%)
= ([T ® (AT ® A%)
= ®|(A) I ®A%)

=1 (|(A°)1]A%).

Now again using Lemma 2.4 and the above relation, we have

MG THGR) = MDA(I(A9) THAR) = A(|(A9)~HA%).
Thus condition p(|(A°)~1A2) < 1 yields

p(I(G)7HGR) <1,

and according to Theorem 2.3 we conclude that the interval matrix G is regular. Regularity of the
coefficient matrix G yields boundedness of the solution set Z(G,b) of the interval linear system
of equations (1.3). So by the mentioned point, we conclude that the solution set Z(A,B) of the
interval matrix equation (1.2) is bounded.

O

Now we present another condition which yields the solution set Z(A,B) of the interval matrix
equation (1.2) is bounded. This condition also yields regularity of the interval matrix G.

Theorem 2.6. Consider the interval matriz equation (1.2). If the inequality |mid(A)X| < rad(A)|X|
has only the trivial solution X = 0 € R™*™  then the interval matriz G in (1.3) is reqular and the
solution set Z(A,B) is bounded .

Proof. If we define x = vec(X), then using Lemma 2.4, we obtain the following equivalent forms
for inequality |mid(A)X| < rad(A)|X]|
lmid(A)X| <rad(A)|X
<= |vec(mid(A)X)| < vec(rad(A)|X])
= |(I® A%z| < (I ® A®)|z|
= |(I® Az < (I®A)z|
= |G| < GP|z|.

So assumption of the theorem yields that the inequality |G°z| < G®|z| has only the trivial
solution x = 0 € R™". Therefore by Theorem 4.1 of [4], we conclude that the interval matrix G is
regular and similar to what has been mentioned in the previous theorem, regularity of the coefficient
matrix G yields boundedness the solution set Z(A,B) of the interval matrix equation (1.2).

O
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Pricing of Europan option using three types of b-spline
functions

Farshid Nourian, Mehrdad Lakestani, Sedigheh Sabermahani, Yadollah
Ordokhani

Abstract. In this paper, we present a numerical method for pricing European options. This
approximation method is based on the characteristic function and family of B-Spline function (in-
cluding: Linear, Quadratic and Cubic B-Spline).

1. Introduction

One of the most important issues in quantitative finance is pricing options using numerical methods
that include numerical solution of PDE, numerical integration and the Monte Carlo method. There
are various techniques for numerical integration, such as the Cos method [1], the Wavelet method [3]
and the SWIFT method [2].

2. option valuation

Here we consider this risk-neutral option valuation formula [2]
v(@,t) = exp(—r(T — 1)E? [v(y, T) |]

= exp(—r(T 1)) /R o(, T)f (y |x)dy,

where v denotes the option value, T is the maturity time, ¢ is the initial date, E? is the expectation
operator under the risk-neutral measure ), x and y are state variables at time ¢t and T, respectively,
f(y|z) is the probability density of y given z, and r is the deterministic risk-neutral interest rate.
The density function f is unknown, while the characteristic function is available for different asset
price dynamics, which is the Fourier transform of f.

The variables x and y are also defined as follows

St
K

St

)7 y:]n(—%

x = In( 7

with S; the underlying price at time ¢ and K the strike price. Also, the pay-off for European option
is obtained from the following equation

o(y,T) = [+ K(exp(y) — 1)] 7,

o= 1, call,
|l -1, put.

Keywords: Option pricing, B-Spline function, Characteristic function, Collocation method .
AMS Mathematical Subject Classification [2010]: 91B25, 41A15, 74G15 .
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3. B-Spline and Characteristic function

Pricing of Europan option

Definition 3.1. The sth order of the B-Spline function is defined as follows [3]

+oo 1
No@) = [ Noi(w—t)No(t)dt = /0 Noa(w—tdt,  s>1,

—00

where,
1, 2z€/0,1),
No(z) = { 0, o.w.[ )

Definition 3.2. The characteristic function, gx(w) for w € R of the random variable X, is the
Fourier-Stieltjes transform of the cumulative distribution function Fx(z), i.e.,

9x(w):=E [ein] = /ReiwxdFX(:c) = /Reiwxfx(l')dllt. (3.1)

4. Numerical approximation

According to the definition of the characteristic function (3.1) for a specific random variable with
the density function f, we have

o) = [ e fayde
R
For fixed J, a function f € L?[a,b] can be approximated using B-Spline functions as

f@) = fp(x) = coppsn(z) = CTo(x), (4.1)
k

where ¢ ;s are B-Spline bases, and C' and ® are vectors which their entries are cjis and ¢ s,
respectively.

Since f(z) rapidly decays to zero as x — 400, we truncate the infinite integration range to
[a,b] C R, without losing significant accuracy,

mmzéwwwm:[w%ww.

Using relation (4.1), we get

b
g(w) = CT/ e (x)dx ~ CT/ () dx.
R a

Assume

So we get
g(w) = T (w). (4.2)

Using a suitable collocation method we change the equation (4.2) to a system of Algebraic equation,
which can be solve to find the vector C. So the unknown function f, can be found using relation

(4.1).
vy
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5. Numerical Example

F. Nourian, M. Lakestani, S. Sabermahani, Y. Ordokhani

Assume that asset price dynamics follow the GBM(Geometric Brownian Motion) process, where
the characteristic function is as [3]

1 1
gaeM(w) = exp(—iwz — iw(r —q — 502)(T —t) — iasz(T —t)).
Let
So =100, r=01, ¢=0, T=01, o=0.25, (5.1)

we solve the problem for two strike price K = 80 and K = 120.
Table 1 and 2 show the absolute errors for different values of j and different orders of B-Spline
functions.

Table 1: The absolute errors for different values of j and different orders of B-Spline functions, with
parameters as in (5.1); K = 80; reference val.= 20.799226309.
- j=4 j=5
Linear B-Spline 1.1 x 1073 3.7 x 10°°
Quadratic B-Spline 2.9 x 1073 8.2 x 1077
Cubic B-Spline 3.9x107* 3.09 x 1077

Table 2: The absolute errors for different values of j and different orders of B-Spline functions, with
parameters as in (5.1); K = 120; reference val.= 0.044577814.
- j=4 j=5
Linear B-Spline 6.7 x 1077 2.5 x 107°
Quadratic B-Spline 2.8 x 107> 2.4 x 1076
Cubic B-Spline 1.4x107° 25x1077
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Approximate solution of the local time M-fractional
Volterra integral equations of the second kind

Mousa Ilie, Ali Khoshkenar

Abstract. In the current article, the local time M-fractional Volterra integral equations are
presented and so the homotopy perturbation method is developed for solving time M-fractional
Volterra integral equations of the second kind. Convergence of this technique is proved. The
proposed method has been called M-fractional homotopy perturbation method (MFHPM). The
results obtained demonstrate the efficiency of the proposed method for the local time M-fractional
Volterra integral equations. Some numerical examples are presented to illustrate the proposed
approach.

1. Introduction

Definition 1.1. Given a function f : [a,00) — R, @ > 0. Then local M-fractional integral of f
order « is defined by

jl(fldx, (1.1)

MTXPf(t) =T(B+1) / t

where the integral is the usual Riemann improper integral, and o € (0,1) and g > 0 [1].
Consider the local time M-fractional Volterra integral equations, as the following

z(t) = y(t) + A TP (K (¢, 8)x(s)), Va e (0,1),5>0, (1.2)

where y and K are known functions, A and a are constant and z, is an unknown function. Applying
the local time M-fractional integral definition on equation (1.2), results in

'r DK (t
z(t) = y(t) + )\/ b+ il_i ,8)2(5) (1.3)
by changing the kernel as the following form
r DK(t
K*P(t,s) = (ﬁ+1za t.5), (1.4)
s

as the local time M-fractional Volterra kernel, and substituting (1.4) in (1.3), we derive

z(t) = y(t) + )\/t K% (t, s)a(s)ds. (1.5)

Keywords: M-fractional integral, Time M-fractional Volterra integral equations; Homotopy perturbation method;
Theorem of convergence; .
AMS Mathematical Subject Classification [2010]: 45D99-65R20-34A08.
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According to equation (1.5), the operator form of MFVIEs (1.2), can be presented as follows

Approximate solution of the local

r=y+ K"z, Vae(0,1),8>0, (1.6)

or
gr=(I— AKOP Yz =y, (1.7)

It is obvious that the local M-fractional Volterra integral equations of the second kind (1.2), are
changed into Volterra integral equations of the second kind, for a, 8 = 1.

Definition 1.2. Let’s consider A = Ay, o = ag, 8 = fp, and (Lg(‘)j)_1 as an £? a operator, exists
and satisfies
(Lg) "Ly = Ly (Lg) ™ =1, (18)

then )¢ is called a regular value of the local M-fractional operator K070 [2],

Theorem 1.3. If for a given o = «, B = By, and A = Xy, the operator (ng)_1 exists, then it is
unique [2].

Proof. In a similar way to proof in reference [2,3] proof is clear. O

Theorem 1.4. If \ is a reqular value of the local M-fractional fractional operator K#, with inverse
the local M-fractional fractional operator (Lg)*l, then for any L* functiony, Eq. (1.6) has a unique

L? solution say x, satisfying see [/].
TS (Lg)*ly. (1.9)

Proof. In a similar way to proof in reference [2, 3], proof is clear. O

2. Local M-fractional homotopy perturbation method (MFHPM)
We construct the local M-fractional homotopy perturbation (MFHPM) as follows,

(1= p)u(t,p) = y()] +plo(t,p) —y(t) = AT (K (¢, s)u(s,p))] =0, Yae(0,1),8>0, (2.1)

where p € [0,1] is an embedding parameter. We assume that solution of (2.1) is as the following

[e.e]

v(t,p) =Y va(B)p" = vo(t) + vi(t)p + va(t)p® + vs(t)p’ + - - . (2.2)

n=0

Substitution of (2.2) into Eq. (2.2), we drive

(1-p) lz un ()" —y(t) | +p

D vaOp" —y(t) AT P (K(ts) Y vn(S)p”)] =0. (23
n=0 n=0
Collecting terms of the same powers p in (2.3), we obtain

P () =y (1), (2.4
Pl (8) = AT (k () y () = (AEPy) (1),

ﬁmww—VMmﬁ@m@Mﬁww@amwm)—Qu@ﬂ%)w,
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Solving Eqgs. (2.4) lead to, a solution of the local M-fractional Volterra integral equations (1.2) as
the following

M. Ilie, A. Khoshkenar

p—1

x(t) = limo(t,p) = vo(t) + v1(t) + vo(t) + )+ Z ((NK*PY))(8). (2.5)
n=1

The operator form of Eq. (2.5), that is the solution of the local M-fractional Volterra integral
equation (1.2), can be as follows

=yt Y ARy, (2.0

n=1
where Eq. (2.6), is called the local M-fractional series for the solution z, of MFVIEs (1.2). And
also, the n-th approximate solution of MFVIE (1.2), can be as follows

(t) + > (AK*P)y)(t)
i=1

3. The convergence of method

Theorem 3.1. (sufficient condition of convergence) The local M-fractional series (2.3), for
(L%‘)_1 conwerges strongly if ||NK®P|| < 1, for a given o € (0,1) and 8 > 0.

Proof. In a similar way to proof in reference [2, 3], proof is clear. O

Lemma 3.2. K% is a £? local M-fractional Volterra operator for a given o, 3 and b > a, then

n KB
\(K@vﬂ) g o) < B s ) s o)

[(n—1)12

VI

1
where K7 (t) = [ | K ( ,3)|2ds}2, and K37 (s) [ |[K*P (t,s)| dt]
Proof. For a, 8 =1, refer [4]. O

Theorem 3.3. If K*P, is a £% local M-fractional Volterra operator for a given o, 3 the series
(1.9), converges strongly for all \, to the inverse the local M-fractional operator of KB,

Proof. In a similar way to proof in reference [2,3], proof is clear. O
Example 3.4. Consider the following the local M-fractional Volterra integral equation
2(t) = 2+ 2 40 TP ((t = 5)a(s)), Va € (0,1),3 > 0. (3.1)
Where for « = 1 and § = 1, the exact solution of MFVIE (3.1), is as follows
x(t) = 4 cosh(t) —
By the proposed M-fractional HPM approach, we read

e (1202 + 20 4 202 + 10a + 12) T (8 + 1)
a(a+1) (a+2)(a+3)
+ 1(20+2) (24204 4 5120° + 41202 + 4o + 20 + 3403 + 10602 + 1440 + 72) (T (8 + 1))?

20(a+1)* 20+ 1) (a +2)* (a + 3) (20 + 3)
YA

z(t) =24+ +
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Approximate solution of the local

lim z(t) = 2.000000000 + 2.0000000000¢ + 0.166666667t* + - - - .

a,f—1

According to Taylor expansion of z(t), clearly has seen that

lim z(t) = 4 cosh(t) — 2.

a,f—1

This solution is the same exact solution of this MFVIE (3.1), for non-fractional case. In Figures 1,
the seventh-order approximate solution of Local M-fractional Volterra integral equation for different
Values «, 8, and exact solution for a;, 3 = 1 are plotted.

300

2004

1004

—

] 2 04 0.6 0.8 1

T T T T T T
0 1 2 3 4 3

—— MFHPMy5 5000 MFHPM, 6 0.4 s
MFHPMy 7 03 MFHEPM, 5 02 —— MFEPM_ 01y
MFEPM, g oy — - MFIP. Mf__c: w| | Exact solution ofNonfactional Equation

Figure 1: The 7th-order approximation of MFHPM for different Values «, 3, and for o, 8 = 1,
versus exact solution of Non-fractional Volterra integral equation.

4. Conclusion

According to this study, the Volterra integral equation of the second kind is developed for the
local M-fractional integral equations and homotopy perturbation method is presented for local M-
fractional Volterra integral equations. The proposed method has been called the local M-fractional
homotopy perturbation method. It was successfully utilized to find an exact or approximate solution
of MFVIEs. Since for a, 8 = 1, MFHPM method is changed into the Neumann method, thus not
unexpected that local M-fractional HPM method has the same accuracy and efficiency as Neumann
method for Volterra integral equations of the second kind [4]. The results have confirmed this fact.
In this study, the norm || - ||2 is used.
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A fast numerical method for fractional ordinary differential
equations

Roghayeh Katani

Abstract. In this work, we propose and analyze an efficient numerical method for solving Caputo
fractional differential equations (FDE) with smooth solutions. Properties of the Caputo derivative
allow us to reduce the FDE into a weakly singular Volterra integral equation and then a numerical
scheme is developed for solving this Volterra type integral equation. The order of convergence of
the numerical method is O(h®). A numerical example is given to show that the numerical results
are consistent with the theoretical results.

1. Introduction

We consider a numerical method for solving the fractional differential equation

Diy(t) = f(t,y(t), 0<t<T,
y Py =y, k=0,1,2,...[a] -1, (1.1)

where the y(()k) may be arbitrary real numbers and a > 0. Here Df denotes the differential operator

in the sense of Caputo denoted by

a o 1 ! n—o— n
D5Y(E) = gy [ (= 0"y () (12)

where n = [«] is the smallest integer a.

Existence and uniqueness of solution for (1.1) have been studied [1,2,7]. Numerical methods
for solving fractional differential equations have been considered by many authors for example
see [3-6]. In this paper by using properties of the Caputo derivative we reduce the FDE into
a weakly singular Volterra integral equation. Once this is done, a number of numerical schemes
developed for Volterra type integral equation can be applied to find numerical solution of FDEs.
For this purpose the total time is divided into a set of small intervals, and between each interval
the unknown function is approximated using quadrature rules and product integration. These
approximations are substituted into the transformed Volterra type equation to obtain a set of
algebraic system of equations. Solution of these systems provides the solution of the FDE.

Keywords: Fractional differential equations, Caputo differential operator, weakly singular integral equations.
AMS Mathematical Subject Classification [2010]: 65R20.
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2. The numerical algorithm

A fast numerical method for FODEs

It is well-known ( [2]) that the initial value problem described by (1.1) is equivalent to the Volterra
integral equation

[a]-1 ik 1 t "
y(t) = Z y(() )k' + ()/0 (t —u)*  f(u,y(u))du, 0<t<T. (2.1)

k=0

In order to explain the numerical method, divide the time 7" into N equal parts, and let h = T//N
be the time interval of each part. The time at the grid points are given as t; = jh, j =0,1,..., V.
For given real numbers ¢; with 0 = ¢y < ¢; < -+ < ¢4 = 1, define the set II,, := {t, ;} of mesh
points by t, ; :==t, +cjh, 7 =0,1,...,4,n=0,1,...,N — 1 where ¢; = %. For simplicity we will
use the following notations y(t, ;) =~ yn; and f(t,;,y(tn ;) = F, ;. Discretization at each node
points t, ; leads to

[a]—1 tk . 1 tn,j
tnj) = Z y(()k) Z}] + F(a)/ (tnj — u)ailf(uay(u))du
k=0 : 0
[a]—1 s n—l i
= 30 = > g = )
1 i a—1
e / (bnj — )L f (u, () ), (22)

The first integral in above relation is approximated by using the two step Romberg quadrature rule,
then we can write

tit1
/ (b — ) (u, y(u) dUNthZ (b — i) P, (2.3)
t;

where wy = wy = 7/90, we = 2/15, w1 = w3 = 16/45. The Romberg quadrature rule can not be
used for the second integral and we use product integration method, then we have

tnj
/ J(tn,j — ) f(u, y(u))du ~ Z Foa / (tn i —uw)* g (u)du, (2.4)
tn

where
U — i
§'=0,5" i tnvi/ o tnajl

The right side integral in relation (2.4) can be calculated exactly, then substituting the approxima-
tions (2.3) and (2.4) in equation (2.2) yields

’—O‘-I_l tk
Yng = U n’j —72’121% tng — tii)* " Fi
k=0 =

tn.j
ZFM/ (tn; —w)* Up(u)du=0, n=0,1,...,N—1,j=1,...,4. (2.5)

Equations (2.5) then gives rise to a system of 4 algebraic equations which for nonlinear cases, can

be solved by using iterative methods such as Newton.
Y
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3. Convergence analysis

R. Katani

Theorem 3.1. Assume that y(t, ;) is the exact solution of the fractional differential equation (1.1)
and yp; be the approximate solution obtained by the method of this paper, then for sufficiently small
h, we have

| y(tnj) = Ynj lloo— 0,

and the order of convergence is O(h®) when the function f has at least siz order continuous derivative.

Proof. The results can be obtained by using a generalized discrete Gronwall lemma. O

4. Numerical results

In this section, in order to test experimentally the convergence of the proposed method we consider
a test problem.

Example 4.1. Consider the initial value problem

2 8 -
Dé/Qy(t) - tQ ] y(t) +t+ ﬁ\/z‘i‘ ﬁt3/2; le [07 1]7

with exact solution y(t) = t? + t.

Table 1 displays the absolute error and ratios of the errors for h = 0.2 and A = 0.1 at certain
mesh points. We observe that the ratios are more than 2° = 32 that indicating the theoretical
convergence order of at least h°.

Table 1: Numerical results of example /.1.

t N=5 N =10 Ratio
0.1 1.4806e—06 4.2097e—8 35.17
0.2 4.1272e—06 8.9359¢—8 47.79
0.3 3.9489¢—06 9.3511e—08 42.22
0.4 4.3430e—06 1.2323e—07 35.24
0.5 6.2515e—06 1.5985e—07 39.11
0.6 1.7405e—05 5.1696e—07 33.66
0.7 2.3539¢—05 6.3365e—07 37.15
0.8 5.8393e—05 1.6711e—06 34.94
0.9 6.3477e—05 2.0168¢—06 31.47

1 6.5160e—05 1.9275e—06 33.81
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An interpolation-based method for the numerical solution
of multi-point boundary value problems

Nasibeh Karamollahi, Mohammad Heydari, Ghasem Barid Loghmani

Abstract. Two-point Taylor expansion as a certain case of Hermite interpolant is utilized to ap-
proximate the solution of multi-point boundary value problems. The properties of this interpolant,
in addition to the use of differential equation under consideration and its boundary conditions help
to reduce the computation of the solution to some algebraic equations.

1. Introduction

Multi-point boundary value problems (MBVPs) appear in the modeling of many situations in science
and engineering (see [1] and references therein). If a system is modeled by different differential
equations over subintervals of the main domain, then the solution should satisfy some conditions at
the boundaries of these subintervals. The result of such a model is a MBVP. Consider the second
order differential equation

y'(x) = f (z,y(2x),y/(x)), 0<z<1, (L.1)

subject to one of the multi-point boundary conditions

y(0) = Zm;aiy@) o y1) = f}m(@ A (12)
y(0) = f;aiy'@i) Pl y(1) = f;ﬂiy@ Y (13)
(0) = ﬁ:;aiy@i) Pl /(1) = ém’(&-) A (14)
Y (0) = iaﬂ/@ o )= Zm;ﬁiy%si) Y (1.5

where o; € [0,1),5; € [0,1),& € (0,1), Ao and A\ are constants. Also suppose that f in (1.1)
satisfies the sufficient conditions to guarantee the existence and uniqueness of the solution of the
problem. It should be noted that multi-point boundary conditions are not limited to conditions
(1.2)-(1.5).

The aim of this paper is to propose an efficient numerical method to approximate the solution
of second order differential equation (1.1) with certain multi-point boundary conditions of type

Keywords: Two-point Hermite interpolation, Multi-point boundary value problems.
AMS Mathematical Subject Classification [2010]: 65D05, 34B10.
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(1.2)-(1.5). For this purpose, a particular case of Hermite interpolation method, namely two-point
Hermite interpolation or two-point Taylor formula (TTF) is considered. This interpolation method
utilizes the values of a function and its derivatives up to an adequate order at the endpoints of the
domain to approximate the function. The needed data to construct the TTF approximation of the
solution of a multi-point boundary value problem can be extracted by using the structure of the
differential equation and its related boundary conditions.

An interpolation-based method for multi-point problems

2. The numerical method

The base of the numerical method proposed in this article, to approximate the solution of MBVPs,
is an explicit form of the two-point Hermite interpolant. This explicit form is presented in the
following theorem:

Theorem 2.1. [2] Suppose that y € C?*[0,1], then y can be approzimated using the polynomial
interpolant

n—1

Pan1(552) = 3 (30(0)Coalw) + (~1)'y P (1)Cri(1 - 2)) (21)
=0

where the basis functions Cy,; are defined by

; n—i—1 .
x' n n+j—1
Cri(z) ==L -2)" > ( ’

7!

>xj, i=0,1,...,n—1.
§=0

Furthermore, the error term of the approximation can be computed as

(2n)
Ry (52) 1= (a) ~ Pt (i) = g Sam1 -, 6 0.1),

Consider the second order differential equation (1.1) subject to multi-point boundary conditions
(1.2). We present the method for this case and the other cases can be described in the same manner.
If the values of a function and its first n — 1 derivatives at x = 0 and x = 1 are available, the TTF
approximation to this function can be constructed using (2.1). However, these values are unknown
when we try to approximate the unknown solution of problem (1.1)-(1.2). Therefore, we intend to
find a suitable way to estimate them. The available tools to achieve this goal are the differential
equation under consideration and its related boundary conditions. Indeed, we keep y(0), y(1), y'(0)
and y'(1) as unknowns and utilize (1.1) to compute y”(0) and ”(1) in this unknowns as

y"(0) = £(0,9(0),5/(0)), ¥"(1) = f(Ly(1),y' (1)) (2.2)

Moreover, differentiating (1.1) and utilizing (2.2) help to calculate 3"’ (0) and y”’(1) in terms of the
same unknowns as before. The same thing happens by two times differentiating (1.1) to calculate
y®(0) and @ (1). This process can be continued to calculate all the needed derivatives to obtain
(2.1). Indeed, for i = 2,3,...,n — 1, all the values of y(i)(O) can be computed in two unknown
values y(0) and 3/(0), and 5y (1) can be obtained in unknowns y(1) and y/(1). Therefore, we should
construct a system of four algebraic equations and four unknowns y(0), y(1), ¥'(0) and ¥'(1) to
attain the needed data to construct (2.1) as the approximate solution of (1.1)-(1.2). To this end,
we can first substitute the approximation Pgn,\cl éy; x) into the boundary conditions of the problem
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to get

N. Karamollahi, M. Heydari, G. B. Loghmani

y(0) = aiPan_1(y;: &) + Mo,
i=1

m (2.3)
y(1) = BiPan1(y;:6) + A1,
1=1
and then employ the residual function based on differential equation (1.1) which is defined by
RGS(IE) - gn—l(y; .%') ~ f (JJ, P2n—1(y; JI), P/Zn—l(y; x)) 9
and compose the following equations
R =0,
es(zy) (2.4)
Res(zz) = 0,

where z1,z9 € (0,1) are two arbitrary points. The solution of (2.3)-(2.4) as a system of four
equations and four unknowns provides 7(0), 7(1), ¢'(0) and (1) as the estimation of unknown
values y(0), y(1), ¥'(0) and y/(1), respectively. The obtained estimations can be used to approximate
the higher order derivatives of y at x = 0 and « = 1. Thus, the needed data to construct the TTF
approximation (2.1) are available and the approximate solution of (1.1)-(1.2) can be achieved.

3. An application

The models of most small size bridges include two support points (left hand-side of Figure 1).
These models can be formulated using a standard two-point boundary value problem. However, the
model of a large size bridge can be formulated by a MBVP, if it is arranged using more than two
supports (right hand-side of Figure 1) [3]. Two different types of conditions is possible near each
endpoint of the bridge. When the position of the bridge at the supporting points near x = 0 and
x = 1 is important for the designer, the suitable boundary conditions are (1.2). However, boundary
conditions (1.5) describe the situation in which the designer tries to control the angles of the bridge
at the supporting points near x = 0 and z = 1. Furthermore, boundary conditions (1.3) and (1.4)
demonstrate cases that the designer does not take the same approach at the endpoints of the bridge.
As an example, consider the MBVP [3]

y'(2) + (2° + 2+ 1) (y(2))* = g(a),

1 /2 1 /7 1. [14
v(0) =5y (9> 3 (9) B <81> ’ (3.1)
=20 (2)+ (1) - Zan (1)
57\ 9 27\9 30 81)"
where g is calculated such that the exact solution of the problem is y(x) = %sin (x — x2).
The proposed method is applied to approximate the solution of (3.1). All the results are obtained
by using Maple software on a Core(TM) i7 PC with 3.60 GHz of CPU and 8 GB of RAM. The
maximum absolute error (Es) of the proposed TTF taking (z1,22) = (2, §) for different values of
n, and the used CPU time for each case are presented in Table 1. This table indicates the capability

and acceptable accuracy of the TTF for solving problem (3.1). The presented TTF can be applied

to approximate the solution of other practical MBVPs.
fv
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Figure 1: Simple models of bridges.

1 I

n ) 10 15
Ewo 3.59e-05 8.02e-14 2.22e-20
CPU time (s) 0.110 0.593 0.656

=

t=y

H

Table 1: Results for problem (3.1).
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Numerical analysis application in virtual teaching with EJS
software

Maedeh GholamAzad, Amir Pishkoo

Abstract. As a result of social distancing measures implemented around the world in the aftermath
of the new coronavirus (COVID19) crisis, virtual educations have been forced to adjust their teach-
ing patterns, potentially shifting from traditional in-person teaching to online education or virtual
teaching (VT). A variety of methodologies and algorithms can be used to create VT. One of the
most important is numerical analysis. Numerical analysis is a branch of mathematics and computer
science concerned with developing, analyzing, and implementing numerical solutions to continuous
mathematics problems. This article provides methodologies and approaches for designing the VT
using various numerical analytic algorithms and the Easy Java Simulation (EJS) software.

1. Introduction

The new coronavirus (COVID19) epidemic has resulted in a significant reduction in student and
intern operational opportunities. Science and technology have advanced and innovated as a result
of this topic, and VT technology is evolving as time demands [1]. VT systems can be designed and
manufactured using a variety of designs and methods. For simulation and improved understanding,
EJS software is one of the most useful. The implementation language is EJS, which is one of the
most widely used programming languages today [2]. EJS is an open-source program that allows you
to create various simulations by inputting model equations and creating a graphical user interface
(GUI) for the program [3]. Due to the COVID19 pandemic, several colleges have incorporated this
type of tool to enhance their virtual courses in recent years. Face-to-face laboratory practice is
typically not available to students in scientific and technical subjects due to the distant learning
paradigm. As a result, distance learning processes require the usage of internet tools such as
VT [4]. Runge-Kutta (4), Euler, Euler-Richardson, and other key solvers derived from the numerical
analysis algorithm are included in EJS. The application of numerical analysis for the design of the
VT utilizing the EJS program is shown in this paper. To begin, a brief overview of the EJS
environment is provided. Following that, the EJS creates a simple physics example. The creation
of a simple pendulum utilizing the Runge-Kutta(4) is the subject of this section’s research.

The following is how the paper is structured: Section 2 discusses the current state of EJS and how
to create EJS apps using it. EJS’s creation of the simple pendulum is discussed in Section 3.

2. About Easy Java Simulations

EJS is a free Java authoring tool that assists non-programmers in creating interactive simulations
in Java or JavaScript, primarily for educational or learning reasons, and is a component of the Open

Keywords: Virtual Education, Numerical analysis, Algorithm, Easy Java Simulation.
AMS Mathematical Subject Classification [2010]: 655xx, 65505, 65599.
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Source Physics project [4]. Despite its user-friendly interface, EJS contains all of the capabilities
required for a full modeling cycle. Figure 1 depicts the main EJS environment.

+ Description I\:}odel View Informat fon L,y\_l
; i el J A}
| Workpanel

selector E— |
\ Teskbar ..

o

| Workpanel ‘ f

=r w

- F 4 -

Click to create’a description page =

il

Message
area

Output Clear output

Figure 1: The EJS user interface with annotations.

The right-hand taskbar has icons for clearing, opening, searching, and saving files, configuring EJS,
and displaying application information and help. It also has icons for running simulations and
packaging one or more simulations into a single file. Right-clicking on taskbar icons brings up
additional (but related) options that will be explained when needed.

EJS displays informational messages in the output section at the bottom of the interface. The work
panels, which are located in the center of the interface, are where the modeling is done.

3. Designing a simple pendulum

The model is defined in the Model work panel so that EJS can transform it into a program. We
investigate the motion of a basic pendulum in this simulation. You can alter the pendulum bob’s
mass, the length of the string, the acceleration due to gravity, and the pendulum’s initial position.
The pendulum’s motion as a function of time can then be observed.

Identifying, defining, and initializing the variables that represent the system is a good first step
when constructing a model.

We will use the Evolution panel frequently for models that are not based on ordinary differential
equations since it allows us to build Java code that determines what changes are occurring in time
(ODEs). The View is the third EJS work panel. This work panel enables us to develop a graphical
interface with minimal scripting that integrates visualization, user interaction, and program control.
The properties of image (the ODE with Runge-Kutta (4) solver) and the final simulation for the
simple pendulum created by the View work panel are shown in Figures 2 and 3, respectively.

It’s time to start the simulation by pressing the Run button on the taskbar. EJS creates and compiles
Java code, gathers auxiliary and library files, and runs the produced program. It’s all done with a
single mouse click. To ensure that the model is in a consistent state, running a simulation initializes
its variables and executes the fixed relations. When the user interface’s play/pause button is pushed,
the model’s time evolution begins. (When the simulation is paused, the play/pause button displays
the icon; when it is running, it displays the icon.) The software in our present example uses a
numerical method to advance the harmonic oscillator differential equation by 0.05 time units before

running the fixed relations code.
OO
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Figure 3: Final simulation of the simple pendulum.
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A new numerical algorithm for the fractional model of
human liver with new modified parameters

Hamed Ebrahimi, Jafar Biazar

Abstract. This paper investigates the dynamics of a fractional-order model of the human liver. The
proposed model is examined via quasi-hat functions (QHFs). Utilizing a method that incorporates
the operational matrices of QHFs is used to reduce the problem to several systems of two equations
with two unknowns. Finally, an illustrative example is provided to confirm the accuracy and
validity of the proposed scheme. We have studied the stability and convergence of the method for
this system. However, these aspects are not covered here.

1. Introduction

A phthalein dye called bromsulphthalein (BSP) is used in liver function tests. Determining the
rate of removal of the dye from the bloodstream gives a measure of liver function. [1]. In 2004,
an integer-order model of human liver was studied and solved by Celechovska [2]. The fractional
mathematical model of the dynamic behavior of liver function (couple system) with new parameters
is presented as follows:

othaul(t) _ _§sin(ﬁa/2)ul(t) + €§in(ﬁa/2)u2<t)7 (1 1)
OCD?UQ(t) _ 5szn(7ra/2)ul (t) _ (Eszn(ﬂ'a/Z) + 905'Ln(7roz/2))u2(t)7 O<a<lte [O,T], :

with initial conditions u;(0) = A, u2(0) = 0, and §'D§* is the Caputo fractional operator [1]. Figure
1 illustrates the flow of BSP between the blood wui(t), liver ua(t), and bile. Normal liver function;
not more than 5% of the dye should remain in the blood at the end of 45 min.

1.1. Definition of QHFs

These functions are established based on the idea of the hat functions [3]. Quasi-hat functions are
defined as follows for i even, and 0 < i < n:

S (t— (i — (i i i
@(t):{ QSf(t (i +D)h)(t = (i 4+ 2)h), Oizhgeé;s(e’ntz)h, (12)

when ¢ is odd, and 1 <i<n —1:

Lt—@G—-1Dh)(t—(i4+2)h), (i—-1Dh<t<(i+1)h,

() — T 2h2
¢i(t) { 0, otherwise, (1.3)

Keywords: Numerical algorithms; Fractional modeling; Human liver; Fractional operational matrix.
AMS Mathematical Subject Classification [2010]: 65Yxx, 37TN25, 65D15.
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wherein n > 2 is an even positive integer, h = % An arbitrary function u,(t), can be approximated
by a linear combination of QHFs as the following:

A fractional model of human liver with new modified parameters

uv(t) = Zaviqbi(t) = AvT(p(t)a q)(t) = [¢0(t)7 ®1 (t)a ey qbn(t)]Ta
i=0
Ay = [ayo, ap1, ...,am]T, ayi = uy(th), i=0,...,n, v=1,2. (1.4)

1.2. Fractional order integral operator

Here, the Riemann-Liouville integral operator of order « is expressed, as well as its property [3]:

o 1 ! a—1 a/C nHa S (@) ¢
I u(t)—r(a)/o (t—7)*" u(r)dr, I(5Dj u(t))—u(t)—;u (0)5, n—1<a<n.
Theorem 1.1. Let u,(t) and ®(t) be given by (1.4) and o > 0, then
IRB(1) ~ QB(1),  Ifuy(t) ~ ATQ (), (1.5)

where Q% is the (n + 1) x (n + 1) operational matriz of fractional integration of order o in the
Riemann—Liouville integral sense as follows:

O p p2 p3 pa o Pn-i Pn
0 o1 09 03 04 .. On-1 Op
0 0 0 p1 p2 .. Pn-3 Ppn2
0 0 0 o1 09 .. 0On-3 Op_29

h® . )
0 0 0 0 0 P1 P2
0 0 0 0 0 01 g9
0 0 0 0 0 0 0

where

pr=aa+3), p= (k:o‘“(% “3a—6) +2k%(a+1)(a+2) + (k—2)*T 2 -2k — a)) :

o1 =4(a+1), op=(k-2°"2k+a-2) -2k -2)2+a)1+a)— (k)*T(2k -6 — 3a),
k=23,..,n.

Proof. Take into account the coefficient of Q% = [0] ;;» Which is the value of I ¢;(t) at the jh point,
1=0,1, j=0,...,n. some simple manipulations completes the proof. O

2. Description of numerical algorithm based on QHFs

In order to obtain numerical solutions of Eqgs. (1.1) using QHFs, by applying (1.2)-(1.4) and
substitution (1.5)-(1.6) into Egs. (1.1) results in

AlT o )\ET + 5sin(7ra/2)AlTQa o Esin(ﬂa/2)A2TQa =0,
AQT o 6sin(7roc/2)AlTQa + (gsin(ﬂ'a/Q) + (psin(wa/Q))A2TQa =0, 0<a<l, te [O,T],
oy
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Table 1: Comparison between QHFs, and generalized Mittag—Leffler function method (GMLFM)
for uy(t), ua(t) with Clinical data, a=1.

H. Ebrahimi, J. Biazar

Times The amount of BSP in blood: u;(t) The amount of BSP in liver: wus(t)
t Clinical data [2] | GMLFM [1] | QHFs; h=0.5 | Clinical data [2] | GMLFM [1] | QHFs; h=0.5
0 250 250 250 0 0 0
5 184 192.24 191.95 65.8 56.35 56.68
10 141 151.36 150.96 106.5 93.6406 94.09
20 98 101.44 101.04 141.5 132.65 133.09
30 80 75.71 74.99 148.3 145.11 145.92
43 64 68.09 57.58 — — —

wherein E = [1,1,...,1]7. This system has the dimension 2(n + 1) x 2(n + 1). Suppose Q* =
[H]ij, i,7 =0,...,n,. As shown in the operational matrix (1.6), and based on the initial values, we
have the following Algorithm:

Step 1: Inputs, n (even), a, T, Q% = [H]ij, i,7=0,..,n, u1(0) = Ay, u2(0) =0.

Step 2: Set and solve recursive algebraic system k, (2 x2) k=1,3,...,n—1.

aip = A, ag = 0.
for k=1:(2):n—-1
Solution of the k' (2 x 2) system k, determines the unknown parameters.

) k ) k
ai, + 68271(71’04/2) |:Z eikzali:| _ Esm(7ro</2) |:Z eika2i:| —A=0,
systemk : =

agp — 65 (rar/2) |:Z 0. ka11:| (65171(71'&/2) + psin (rar/2) ) |:z 0. ka21:| =0,

and we can get
k+1
11 = —55m(Te/2) [Z 02k+1a17,:| + gsin(ra/2) [E 9m+1®22} + A,

. k+1
Aopi1 = §sin (mae/2) |:Z 9@k+1alz:| _ (Esm(wa/Q) + Sosm(wa/2 ) |:Z 91k+1a21:| ,
=0 =0
end

n
Step 3 : Get ay,; and determine u,(t) ~ > ayi¢i(t), v=12, 1=0,..,n.

3. Simulation results and discussion

The numerical results (at different «) are presented in Table 1 and Figure 1 for 7' = 60. The values
of the parameters are selected as § = 0.054736 , ¢ = 0.0152704 , © = 0.0093906 , and A = 250
based on a realistic analysis in [2]. The relative error for u;i(t) at the end of 43 min with a=1 and
a = 0.98 are 0.1003 and 0.0320, respectively.

Conclusion: The dynamic behavior of this model via QHFs confirmed the behavior of clinical
data. Based on this method, the liver and similar problems can be derived as n/2 algebraic systems
involving two equations and two unknowns. Compared with the classic model with @ = 1, the

model with a = 0.98 gives more realistic results.
0¥
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200

Ssin (ma/2)

4 uy(t )
o r P e R P e - 1( ) sin(mal2)
s

Figure 1: The QHFs solutions for o = 0.98, h = 0.5 and Clinical data (Left: two plots), Flow scheme
of the human liver math model (Right).
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An efficient method for solving the system of generalized
Abel integral equations in three unknowns

Sayed Arsalan Sajjadi, Hashem Saberi Najafi, Hossein Aminikhah

Abstract. In this paper, we consider the product integration method for solving the system of
generalized Abel integral equations in three unknowns. This is a mixed system of first kind Volterra
integral equations with singular kernels. Finally, some numerical examples with smooth and non-
smooth solutions are provided to test the efficiency of method.

1. Introduction

Systems of singular integral equations appear in many branches of scientific fields such as microscopy,
seismology, radio astronomy, electron emission, atomic scattering, radar ranging, plasma diagnostics,
X-ray radiography and optical fiber evaluation [6]. The general ideas and the essential features of
these systems are of wide applicability [6]. In this paper, we consider the following system of Abel’s
generalized singular integral equations in three unknowns from [6]

a(e) = /0 (=07 + (@ - P20 + (@ - )P dt
g(x) = / ’ (@ =) + (o = )P20(t) + (@ — ) Pw(®)) d,

ga(a) = / (=7 + (@ - O PRu() + (@ - )P de
L zel:=[0,T) (1.1)

where the singular kernels (z — )% (1 < i,j < 3) and the continuous functions g; (1 < j < 3)
are given real-valued functions. The functions u(t),v(¢t) and w(t) are unknowns which should be
determined. Also, 0 < 8;; <1 (1 <14,j <3) and g;(0) =0 (1 <j < 3). We assume that
(v — t)—ﬁll (v —t P12 (v — t)—513
det | |(x—t)™Pn (z—t) P2 (z—t) P # 0 in order to guarantee the existence and unique-
(z — t)*531 (z — t)*ﬁsz (z — t)*/333
ness of solution of (1.1) (see [6]).

In [6], the system (1.1) is examined using the Laplace transform method. The existence and
uniqueness solution of the system (1.1) can be related to Theorem 6.1.14 from [2]. It’s known that
a first kind Volterra integral equation is an example of an ill-posed problem [2]. One of the most
powerful ways for dealing with poorly behaved integrands is product integration [4]. The solutions
of (1.1) maybe have singularity at the lower bound of the domain of integration. To deal with
this non-smooth behavior, we use the product integration method to numerical solution of (1.1).
Finally, we provide three numerical examples with smooth and non-smooth solutions to test the
accuracy and efficiency of the presented method.

)
-

Keywords: Numerical solution, Singular integrals, Integral equations, ill-posed, Product integration.
AMS Mathematical Subject Classification [2010]: 45F15, 45Dxx.
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Solving the system of Abel integral equations

2. Algorithm of method
The first kind Chebyshev polynomial T (x) is defined by the following relation
Tn(z) = cos(N cos™ ! (x)),
and satisfy in the following recursion relation [5]
Tn(x) =22Tn_1(z) — Tn—2(x), N=223,...,

with
T()(x) = 1, Tl(l‘) = .

The orthogonality of these polynomials with respect to the weight function w(x) = (1 — :c2)(7

follows
) 0, M=#N,
/zwwmmmmmz I M=N#Q,
- m, M=N=0

The Chebyshev Gauss quadrature points are given by [3]

(27 4+ 1)m ,
ZJ':—COS<2]V,_’_2 s ]:0,,N

The Gauss quadrature formula
1 N
[ e = e+ Y £
_ =

is exact for any polynomial of degree < 2N + 1.

We use the Lagrange interpolating polynomial to approximate u(t),v(t) and w(t), as

7=0
N
IS () = 1i(t)v(z),
=0
N
Ig(w(t) =Y Litw(z)),
=0
where
Ntz
L= T[ =2, i =0,
=0 A
and define

Wiin = / (% — )Pkl (t)dt, j=0(1)N, i=0(1)N, 1 <h,k<3.
0

ov

1
2) as

(2.1)

(2.2)

(2.3)
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Now, similar to the Nystrém method [1], approximating the integrals of system (1.1), we have

ZWHU Zj) + Zlev zj) + Zngw 2;),
7=0

N N N
g2(x) = Z Waru(zj) + Z Waou(z;) + Z Wasw(z;),
7=0 7=0 7=0
N N N
g3(x) = Z Waiu(zj) + Z Wagu(z;) + Zngw(zj), xel:=[0,T] (2.4)
§=0 §=0 §=0

To find the solutions at the node points, let x run through the quadrature points z;(i = 0(1)N).
This yields the following linear system

N N N

1(z) = Y Winu(z) + Y Wiav(z) + Y Wizw(z)),
=0 i=0 i=0
N N N

(2i) = Z Waru(z;) + Z Wagu(z5) + Z Wazw(z;),

N N

93( Zngu 2j —i—Zngv ;) —I—Zngw z;), i =0(1)N. (2.5)
7=0 7=0

The above system is a system of 3(N + 1) equations with same number of unknowns. Solving (2.5),
we obtain the values of u(z;),v(z;) and w(z;).

3. Numerical examples

In this section, we present some examples to illustrate the validity of the presented method in
section 2. We get the numerical results by Wolfram Mathematica 12.2.

Example 3.1. Consider the following system of Abel’s generalized singular integral equations [6]
with smooth solutions

g1(x) = /Ox <(a: — t),wu(t) + (z — t)*l/Qw(t)) dt,
ula) = [ (0 =700 + (o — 1) uit)) .
g3(x) = /0 ' <($ — )" u(t) + (z — t)_3/4v(t)> dt, ze1:=10,1], (3.1)

where g1(z), g2(z) and g3(z) are chosen such that u(t) = 1, v(t) = t and w(t) = t2.

Example 3.2. Consider the following system of Abel’s generalized singular integral equations [6]
with smooth solutions

g1(z) = /Ox ((:n — t)—2/3u(t) + (x— t)—2/3w(t)) dt,
g2(z) = /Ox <(:c — t)—3/4v(t) + (x — t)—3/4w(t)) dt,
g3(x) = /Om ((a: )" ut) + (x — t)_2/5v(t)> dt, e 1:=10,1], (3.2)

OA
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where g1(z), g2(x) and g3(z) are chosen such that u(t) = 1 + 2t + 3t2, v(t) = 1 — 2t — 3t and
w(t) =1+ 2t — 3t2.

Example 3.3. Consider the following system of Abel’s generalized singular integral equations with
non-smooth solutions

@) = [ (=07 25ule) + (o= ) Vhu(e) + (o — ) ()
0
rel:=101, (3.3)

where g1(z), g2(z) and g3(x) are chosen such that u(t) = vt, v(t) = sin(v/#) and w(t) = t*/3.

Tables 1, 2 and 3 contain the maximum errors for examples 3.1, 3.2 and 3.3, respectively. Figs.
1, 2 and 3 represent the error behaviors of the calculated solutions, corresponding to the examples
3.1, 3.2 and 3.3, respectively, at the grid points for N = 12.

Table 1: The obtained maximum errors ||u — un||so, ||V — UN]||co and ||w — wy||co by presented
mathod for Example 3.1.
| N | 2 1 | 8 | 16 | 32 | 64

[lu — un|loo | 0.0000329838 | 0.0000108216 | 1.106453 x 107¢ | 1.115676 x 107° | 1.14464 x 1072 | 1.22125 x 10~
[lv — vn|loo | 0.0000355824 | 0.0000114222 | 1.135019 x 107¢ | 1.121844 x 107® | 1.13143 x 1072 | 1.37668 x 10~ '*
[lw — wn||oo | 0.0000329812 | 0.0000108213 | 1.106450 x 107° | 1.115677 x 10™° | 1.12677 x 1072 | 1.17684 x 10~ '*

2.x107"

Error Error
1.x1078 1.%10°8
8.x107" 8.x107" : §
6.x10" 6.x1077
4.x107" 4.x107" : :
2.x107" } 2.x107" | §
| | i | \Z i i Il \Z
02 04 06 08 10’ 02 04 06 08 10’
Error
1.x1078 }
8.x107" :
6.x107" §
4.x107"
02 04 06 08 1.0’

Figure 1: Plot of obtained errors |u — uy|, |[v — vy| and |w — wy| by the presented method with

N = 8 for Example 3.1.
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Table 2: The obtained maximum errors ||u — un||co, ||V — UN]||co and ||w — wy||oco by presented
mathod for Example 3.2.
| N ] 2 4 | 8 | 16 | 32 | 64

[lu — unl|los | 0.0000880819 | 0.0000309938 | 3.19274993 x 10~° | 3.1946375 x 107® | 3.2081 x 107'2 | 6.1284 x 10~ *
[lv — vnlloo | 0.0000880818 | 0.0000309938 | 3.19274991 x 107° | 3.1946371 x 107% | 3.24629 x 1072 | 8.5709 x 10~
[lw — wn||eo | 0.0000810976 | 0.0000294374 | 3.11977989 x 1075 | 3.178955 x 1078 | 3.21156 x 1072 | 8.1394 x 1074

02 04 06 08 10

,,,,,,,,,,,,,,

S ~.—|W_WN

. g . :Zj
02 04 06 08 10

Figure 2: Plot of obtained errors |u — uy|, |v — vy| and |w — wy| by the presented method with
N = 8 for Example 3.2.

Table 3: The obtained maximum errors ||u — un||so, ||V — N]||eo and ||w — wx]||s by presented
mathod for Example 3.3.

N 2 4 8 16 32 64

|lu —un]||eo | 0.0201987 | 0.0112029 | 0.00601395 | 0.00314132 | 0.00161014 | 0.000816218
|lv — vn||eo | 0.0157754 | 0.010693 | 0.00552607 | 0.00338234 | 0.00312386 | 0.00262143
[lw—wn||leo | 0.0356525 | 0.0227428 | 0.0144483 | 0.00910235 | 0.00569364 | 0.00354716

4. Conclusion

In this paper, we used the product integration method to the numerical solution of Abel’s generalized
singular integral equations in three unknowns. The accuracy and efficiency of the presented method

were tested by providing some numerical examples with smooth and
?0
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R S A
02 04 06 08 10

Figure 3: Plot of obtained errors |u — uy|, |[v —vy| and |w — wy| by the presented method with
N = 8 for Example 3.3.
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Some boundary value problems on the Heisenberg Lie
groups

Abdolrahman Razani, Farzaneh Safari

Abstract. The Heisenberg Lie groups are the simplest example of Carnot groups. It has a broad set
of applications in many sciences such as quantum mechanics, ergodic theory, representation theory
of nilpotent Lie group, foundation of abelian harmonic analysis and theory of partial differential
equations. The existence of solutions of some boundary value problems in the Heisenberg Lie groups
is proved via variational methods.

1. Introduction

The Heisenberg group historically originates in and still has its strongest ties to quantum physics:
there it is a group of unitary operators acting on the space of states induced from those observable
on a linear phase space, a simplistic vector space which are given by linear or by constant func-
tions. So any Heisenberg group is a subgroup of a group of observable in certain simple examples
of quantum mechanical systems.

As important topics where the Heisenberg group reveals itself as an essential factor are quantum
mechanics, ergodic theory, representation theory of nilpotent Lie group, foundation of abelian har-
monic analysis, and theory of partial differential equations where we are interested in the last one.
We start with introducing notations and some definitions ( See more details in [2-8] and references
therein).

Thought this note, H" is the Heisenberg Lie group which has R?"*! as a background manifold and
endowed with the following noncommutative law of product

(@ y,t) o (¢, ¢, 1) = (w+ 2",y + o, t + '+ 2((yla") = (),

where z,2',y,y € R", t,t’ € R and (| ) denotes the standard inner product in R”. We denote by
|.|zn Kordnyi norm with respect to the parabolic dilation §,& = (Az, Ay, A%t); i.e.

el = (12 +69)5 = (@ +4°)° + )1,
for z = (z,y) € R? and ¢ = (2,t) € H". A Koranyi ball of center & and radius r is defined by
Byn (§0,7) = {€ : [ 0 &olmn <7},
and it satisfies the following equalities

| Bian (€0,7)| = | Buan (0, 7)| = %] Bya (0, 1)),

Keywords: Heisenberg Lei groups, Laplacian operator.
AMS Mathematical Subject Classification [2010]: 35R03.
Y
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where |U| denotes the (2n 4 1)-dimensional Lebesgue measure of U and @) = 2n + 2 is homogeneous
dimension of H"™. The Heisenberg gradient is given by

Some boundary value problems on the Heisenberg Lie groups

Vir = (X1, Xo,..., X, Y1, Y5,...,Y,),

where

0 0 0 0 0

T=2) X;=——+2 Y = — — 2ai—

A e TR T

are vector fields that constitute a basis for the real Lie algebra of left-invariant vector fields on H"™.
For any horizontal vector field function X = X (), X = {x;X; + 2}Y;}1"_, of class C1(H",R?"), we

i=1
define the horizontal divergence of X by

i=1,2,3,...,n.

diven X =) [ Xi(x;) + Yi(2})].
=1

Definition 1.1. (Horizontal curve) A picewise smooth curve y : [0,1] — H" is called a horizontal
curve if §(¢) belongs to the span of {X;,Y;}" ; a.e. in [0,1]. The horizontal length of y is defined

as follows
LHn / A\ / Hn dir= / |y |Hn dt

where
n

(X, Y)um = Z(ﬂfz‘yi + @35),
i=1

for each X = {z;X; + 2Y;}" |, and Y = {y; X; + y}Y; }1"
Carnot-Carathéodory distance of two points &1, & € H™ is defined by
dec(&1,&2) = inf{Lyn(y) : y is a horizontal curve joining &;,&s in H"}.

Notice that according to Chow-Rashevsky theorem, for any two arbitrary points &1, &, € H”, there is
a horizontal curve between them in H", then the above definition is well-defined. d.. is left invariant
metric on H" and homogeneous of degree 1 with respect to dilations §y, that is

dcc(5A(£1)7 5>\(§2)) = Adcc(ﬁla 52)

for all &,& € H™. We denote by d¢ the Haar measure on H" that coincides with the (2n + 1)-
Lebesgue measure, since the Haar measures on Lie groups are unique up to constant multipliers.

Here, we recall Hardy’s inequality on Heisenberg group stablished in [9, Theorem 1.1].

Lemma 1.2. Let 1 <p < Q and u € Cg°(H"). Then

Q—py [ |uff
[ Vaapae > =Ly [ Bl

As usual, for any measurable set  C H",n > 1, we denote by LP(Q2) the canonical Banach

space, endowed with the norm
1
ulp = ( ;A uprd).
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Also, the first-order Heisenberg Sobolev space on € is defined as follows

HWYP(Q) :={u € LP(Q) : |Vmnu| € LP(Q)},

A. Razani, F. Safari

endowed with the norm
HUHLP = ‘U’p + |VH”“’pv

and we set HW,?() = (C5°(Q), [[ul[1,,) equipped with the norm

[ull, = |Veanulp.
It is well-known LP(Q), HWP(Q) and H VVO1 P(Q)) are separable, reflexive Banach space.

Definition 1.3. (Poincaré-Sobolev domain) An open set Q2 of H" is said to be a Poincaré-Sobolev
domain, if there exist a bounded open set U C H", with & C Q C U, a covering {B}peg of Q by
Carnot-Carathéodory balls B and numbers N > 0, > 1 and v > 1 such that

(1) 2 Bes Lia+1)B < Nlg in U, where 1p is the characteristic function of a Lebesgue measurable
subset D.

(43) there exists a (central) ball By € § such that for all B € § there is a finite chain Bo, Bi, . .., By,
with B; N B;11 # 0 and
maz{|Bi|, | Bit1|}
N )
and moreover, B C vB; for i =0,1,...,s(B).

|B; N Bjy1| >

The next result is a special case of Theorem 1.3.1 in [1].

Theorem 1.4. (i) Let Q2 be a bounded Poincaré-Sobolev domain in H"™ and let 1 < p < Q. Then
the embedding
HWyP(Q) <3 L7()
Q
P

is compact for all o, with 1 < o < p*, where p* = Cgf is the critical Sobolev exponent related
to p.

(1i) The Carnot-Carathéodory balls are Poincaré-Sobolev domains.

Remark 1.5. Combining Theorem 1.4, with the fact that the Carnot-Carathéodory distance and the
Koranyi distance are equivalent on H", we get the following embedding is compact

HWyP(Q) < L7(Q) for 1 <o <p”,
when 2 is a Koranyi ball and 1 < p < Q. Furthermore, there exists C, > 0 such that
lule < Co lullp for 1 <o <p7,

for all u € HW; P ().

Remark 1.6. From Hardy inequality mentioned in Lemma 1.2, since the Carnot-Carathéodory dis-
tance and the Koranyi distance are equivalent on H", we gain the following inequality

Q-p |u|P
ulp P
/Q'VH ufrde = (= )/Q\s|pnd5’

forl<p<@QandueH T/VO1 P(Q) where Q is a Kordnyi ball. For convenience, we set H = (%)p

and so we deduce that » )
/ |“J7 de < / Vi u[Pde.
o €. " = H Jo
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2. Main results

Here, we bring some problems on the Heisenberg groups to show the importance of Heisenberg
groups in PDEs. The first one is a generalized Heisenberg p-Laplacian problem

— Ay ptt+ REufP?u = f(u) — g(u) £€Q,
u >0 5 € Qv
u = 0 5 € aQ’

in which A, yu = divgn (|VanuP~2Vgnu) is Heisenberg p-Laplacian operator which comes from
nonlinear phenomena specially in physics: rheology, glacelogy, radiation of heat, plastic moulding
etc. We can find enough conditions for f and g such that this problem has at least one weak
solution. The next one is a (p, q)-Laplacian problem

—2
—divggn (| Vi uP~2Vignu) — divegn (| Vignu|92Vigau) + '“‘g;ﬂn“ = M(Euw), £€9,

U:O, feaQa

where f is a Carathéodory function with a growth condition and we can find enough conditions
for the existence and multiplicity of solutions to this problem. We would like to point out that
usually solutions to (p, ¢)-Laplacian problems are the steady state solutions of the reaction diffusion
systems. Reaction-diffusion systems are mathematical models which correspond to several physical
phenomena. This system has a wide range of applications in physics and related sciences like
chemical reaction design, biophysics, plasma physics, geology, and ecology. This equations also
arise in the study of solation-like solutions of the nonlinear Schrédinger equation as a model for
elementary particles for example waves in a discrete electrical lattice.
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Numerical method for distributed-order time-fractional
sub-diffusion equations

Tahereh Eftekhari, Jalil Rashidinia

Abstract. In this paper, an efficient method for solving time-fractional sub-diffusion equations
of distributed-order is presented. An error bound for the new method is obtained. Numerical
experiments illustrate the efficiency of the proposed method.

1. Introduction

In the present research, we discuss time-fractional sub-diffusion equations (TFSDEs) of distributed-
order with initial and Dirichlet’s boundary conditions, presented in the following form:

2

¢ (k) _9
0 Dt g U(S7t) - @U(S,t) +g(57t)7 (11)

u(s,0) = a(s), u(0,t) = bo(t), u(l,t) = by(t), (1.2)

where, g is a known function, OCDf (1) s the distributed-order derivative in the Caputo sense, and

o(p) denotes the distribution of order p € (0, 1), such that o(u) > 0 and fol o(p)dp = L > 0. Also,
(s,t) € @ x T, where Q = (0,1), and T" = (0, ¢].

In recent years, numerical methods for solving fractional differential equations of distributed-
order have attracted the attention of a large number of researchers. For a review on numerical
techniques, see for instance [1-5] and references therein.

2. Preliminaries

2.1. The HBPSLs
The HBPSLs are defined as follows:

k —
o (1) = { I (%ft—2n+1), nlyp <t < ghoty, 1)
7 0, otherwise,

m
forn =1,2,...,2% 1 m = 0,1,...,M — 1. Here Ly,(t) = Y mmt!, t € [~1,1] is the Legendre
=0

m m+l—1
= Qm 2
=2 (1) (50

Keywords: Distributed order fractional derivative, Sub-diffusion equations, Hybrid functions.
AMS Mathematical Subject Classification [2010]: 26A33, 65N35.
4%

polynomial of degree m and




Univerity of Guilan

2.2. Function approximation

Numerical method for distributed-order time-fractional ...

A function u(s,t) € L?>(Q x T) can be approximated in terms of HBPSLs as follows

2k1=1 My —12k2—1 My—1

(5 t) = Uk My, k27M2 S, t Z Z Z Z Unmn m’enm( )9 ( ): @(S)TU@(t),

n=1 j=0 n’=1 m’=0

where

—

Jo Jo (5, )0n,0m (5) 0 m/( )w(¢’*@)(s)w(¢"ﬁ)(t)dtds

~
Up, m,n’,m

t
I ] 702 ()02, ., (t)dtds
and U, O(s), ©(t) are defined by
U1,0,1,0 U1,0,1,1 . Uy,0,252-1 Mp—1
~ u1’17170 u1917171 i°% u1,1,2k271,M271
U= . . . )
Ugki =1 My—1,1,0 Yoki=tpap—11,1 <o Uoki—1 ppy—12k2—1 M1

T

O(s) = [01.0(5), -+ B11-1(5), s Oyt 0(5), - O a1 (5)]
T

Ot) = [010(t), 01,01 (1), Ogramt o(8)s -, Oramt gy 1 (8)]

3. The method of solution for TFSDEs of distributed-order

In this section, using the new method gives

1 qu (Sq + 1> (@(s,z)TY@(t, L jq) ap <@(1,2)Tf@(t, ! 26"))

eq+1 eq+1 2

+(1—8)§D; 2 bo(t) + s§D; 2 bl(t)> —0(s)'Te(t,1) - %a(s) —g(s,t) ~0. (3.1)

where © is operational vector for the Riemann-Liouville integral operator of fractional order based
on HBPSLs [1], which for a sake of briefness we will not able to explain them in detail.
Now we collocate the obtained equation at

2711—1 2n2—1

k1—1 ko—1
Snlzm, ng — 2k2M2 ty, ny=1,2,...,28 "My, ng=1,2,...,2"27 " M. (32)

By the “fsolve” command of Maple 2018, we solve the above system and then the unknown T can
be determined. Finally, an approximate solution for (1.1), (1.2) can be obtained.

4. Error bound

Theorem 4.1 (see [1]). Let u € CCM+2) (Q x T). Suppose that u(s, t) is the exact solution of (1.1),
(1.2) and ug, (s, t) is its approzimate solution obtained by the HBPSLs method. Also, let ||o]|y < 7.
Therefore, we have the following error bound of HBPSLs method for the modified equation:

i) (4.1)

1B, < Log=mam

where L is a positive constant.
FA
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5. Illustrative examples

Here, one problem is presented and solved by our proposed method using Maple 2018 software.
Also, we consider k1 = ko =1, N =8, Q xT = (0,1) x (0,1], and obtain the absolute errors,
Loo—errors by

ma‘i‘; L {‘u(smvtm) = Uky, M1 k2, Ma (Snlvtnz)’}?
n1=0,1,..., 28174 M,

no=0,1,...,2k2 =1 a1,

respectively, where s,, and t¢,, are defined in (3.2).

Example 5.1. Consider the following TFDE of distributed-order [4]:

L 2 : )
0 ssin(s)t“(tIlnt + 6t — 6
/F(4—M)8Dfu(s,t)duz(92“(8’”_1_ (5) (1 )
B S nt

u(s,0) = u(0,t) = 0, u(l,t) = t3sin(1),

— 2t3 cos(t),

with u(s,t) = t3ssin(s).

In Table 1, the Lo,—error is reported, for the methods of HBPSLs and CPs [4]. This table

illustrates the accuracy of the HBPSLs method.

Table 1: Comparison of the L.,—errors, for Example 5.1.

Mi=My=n=m HBPSLs CPs [4]
1 6.558298e — 3 3.142e — 1
3 7.193385e — 6 3.469¢ — 3
5 6.667064e — 8 8.382e — 6
7 1.188375e — 10 1.275e — 8
9 2.010265e — 13 1.020e — 11
11 1.400000e — 15 3.709¢ — 14
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RBF-FD method for a fractional inverse problem

Fatemeh Taghipour, Ahmad Shirzadi

Abstract. In this paper, a local meshless method is applied to the inverse source problem of
distributed order time fractional diffusion equation. A first-order finite difference approach is sug-
gested for discretizing temporal variable. Then, the resulting equations are fully discretized by a
radial basis function-generated finite difference (RBF - FD) based method.

1. Introduction

Distributed-order derivatives have proven their applicability on several phenomana. The numeri-
cal approximation of the distributed-order time fractional diffusion equation was studied in many
papers [1,2]. However, there are still few studies related to inverse source problems for distributed-
order time fractional diffusion equations. In this paper, we consider the following distributed time-
fractional diffusion equation with the given initial and Dirichlet boundary conditions:

DY y(x,t) = Au(x,t) + F(x,t), x=(z,y)€QC R tel0,T], (1.1)

u(x,0) =up(x), x€Q (1.2)

u(x,t) = g(x,t), x=(z,y) € 0Nte]l0,T], (1.3)

where g and wug are given sufficiently smooth functions and Dw(a) is time-fractional derivative

of distributed order and defined by D;’ w(e) fo u(x,t)do. w : [0,1] — R is a
continuous non-negative Welght functlon Wlth cond1t1onb

Va € [0,1], w(a) > 0 and fo a)do = W where W is a positive constant and §Djf* is the Caputo

fractional derivative. If the source term F'(x,t) can not be directly observed, it hence becomes
unknown and then, we consider the additional condition

[ wtoutx ix = (o), te 0.1, (1.4)
Q
where w(x) is a given weight function. Suppose further that

F(x,t) = f(x,t)r(t), (x,t) € Q2 x[0,T], (1.5)

Keywords: Inverse source problem, Distributed-order time fractional equation, Fractional diffusion equation, Radial
basis function, Finite difference.

AMS Mathematical Subject Classification [2010]: 65N21, 35R11.
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where f(x,t) represents the known source function component and r(t) is an unknown time-
dependent coefficient that is sought. If w(x) = §(x — x,), then (1.4) becomes

U(Xs, t) = (1) (1.6)

If we consider Eq. (1.1) and (1.5), with additional condition as Eq. (1.6), then the distributed
order derivative of Eq. (1.6) is in the form Df(a)u(x*, t) = Df(a)w(t). Then we get Df(a)u(x*, t) =
Au(xy, t) + 7(t) f(x4,t). We rewrite the recent relation as

RBF-FD method for a fractional inverse problem

Dw(a) ~ _A .,
r(t) = = “(Xf(?*,t) Y l)

By replacing r(t) in Df(a)u(x, t) = Au(x,t) +r(t) f(x,t), we obtain:

DY Dy(x,t) = Au(x, t) + H(x, t)Au, + K(x,t), (1.7)
w(a)
where H(x,t) = —ff((;’fg),k(x,t) = W and Au, = Au(xs,t). In the following section

present an RBF — F'D approach to numerically solve the above equation.

2. Discretization of the governing equation

To discretize the integral term in Equation (1.7), the Gauss-Legendre integration rule is used as

/ f(z)dz = Zv]f (x5), Vf(xz) € C[—1,1], where x;s are roots of Legendre polynomial P, (x)

j=1
and vjs are the weights. So, Eq. (1.7) becomes:

a
> vew(as)§Dfu(x, ) = Au(x, ) + H(x, t) Au. + K(x, ). (2.1)
s=1

A discretization of the time interval [0,7] is considered as {tg,t1,...,tn}, where ¢, = nr and

T = %, n = 0,1,...,N. As described in [3], the following finite difference scheme is used for

discretizing the fractional derivative:

¢ pa " o0 u(x, 1)
oDfu(x, ty 1—a /0 (tn, — 1)~ T ——=dt (2.2)

[aou
where a; = (I +1)17@ — [},
Considering Eq. (1.7) at the point (x,y) and time instant ¢,, and substituting (2.2) in (2.1), we
obtain

1

3
|

k 0
(Ak—n—1 — Qp—p)u” — ap_1u ] :

W

1

n—1
szw as) r2—a ) [ag“’u” — Z(a%jrkl — agjn)uk — ags_luol (2.3)
where v" = wu(x,t,). To describe the RBF-FD scheme, consider a set of N scattered nodes

X1,...,Xy and the fractional differential operator L. For a given node, xi, the objective is to
\'Al
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approximate Lu(xj) as a linear combination of the values of u at the N scattered nodes, i.e.,
N

Lu(x;) =~ Z a;ju(x;). To determine the weighting cofficients «;, a local set of nodal points, called
i=1

an stencil with n nodes and a set of basis functions ¢;(x), ¢ = 1,...,n. In a local set, considering
n

Loj(x;) = Z Bitj(xi) j=1,2,...,n, alocal system of n linear equations of n unknowns will be
i=1

obtained. This system gives an equation corresponding to x; and finally a system of N equations
with NV unknown will be obtained. Solving this system of equations, the coefficients «; will be
obtained.

3. Test problem

Consider the following inverse source problem of the time-fractional diffusion equation:

1
/ '3 — a)gDifu(x, y,t) = Au(z,y,t) +r(t) f(z,y,t), 0<z,y<l, 0<¢t<0.8
0 (3.1)

U(QS, Y, O) =0,

where r(t) = 2('=1 +t), f(z,y,t) = tsin(z)sin(y). The exact solution of the above problem is
u(z,y,t) = t?sin(x) sin(y). Table 1 present the RMS error vrsus the number of nodal points with
four different values of time step 7 . To see the accuracy of the method, the numerical results

corresponding to u(x,y,t) and r(t) are present in Figure 1.

Table 1: RMS error for Test problem at time instant T = 0.8.

LA |l T= 1% T= o T=:5 "= om
1/8 2.0897 x 10~* 9.4207 x 107° 4.2804 x 10~° 1.9586 x 10~°
1/16 1.6108 x 1074 7.2616 x 107° 3.2994 x 107° 1.5097 x 107°
1/32 7.8930 x 10~° 3.5582 x 107° 1.6167 x 1075 7.3974 x 10~°
1/64 5.1258 x 10~° 2.3292 x 107° 1.0660 x 10~5 4.9098 x 1076

(a) Approximate solution with colorbar of RMS error
with h =1/64 and 7 = T//512

(b) The exact and approximate so-
lution for r(t)

Figure 1:

\Al
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Efficient algorithms to solve nonlinear Volterra integral
equations of the first kind

Roya Montazeri, Jafar Biazar

Abstract. In this research, A new approach based on an alteration of usage of Optimal Homotopy
Asymptotic Method (OHAM), is introduced that applies (OHAM) in multistage, let us call it, in
short, as (MOHAM). This procedure is utilized to derive an approximate solution to nonlinear
Volterra integral equations of the first kind (NVIEFK). To illustrate these approaches one example
is presented. The results confirm the efficiency and ability of these methods for such equations.
The results will be compared to find out which method, is more accurate. Advantages of applying
MOHAM are also illustrated.

1. Introduction

The Volterra integral equations of the first kind appear in mathematical models of many phenomena
in different disciplines and engineering branches such as the vehicular traffic, population dynamics,
fluid dynamics, heat conduction problems, the kinetic theory of gases and economics [1,4].

The sample equation under study is as the following.

t
//C(t,u)H&ﬁ(u))duzg(t), a<u<t<hb. (1.1)
Considering the nonlinear term as the following

H (¢ (1) =9 (t)

The canonical form of NVIEFK is as the following
t
ﬂ(t):f(t)—/lC(t,u)ﬁ(u)du, a<t<b, (1.2)

where 9 is a function to be determined, f € I2 ([a,b]), and K € 12 ([a,b] x [a, b]).

In recent years, NVIEFK has been solved by several authors such as Erfanian and Mostahsan by
an optimization method [5], Ma et. al used Sinc Nystrém method [6], Singh et. al applied Haar
wavelet method [7], and some others.

Now we propose the OHA and the MOHA methods for NVIEFK.

Keywords: Optimal homotopy asymptotic method (OHAM), Multistage optimal homotopy asymptotic method
(MOHAM), Volterra integral equations of the first kind.

AMS Mathematical Subject Classification [2010]: 65D07, 65K05.
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2. The OHAM and MOHAM applications

MOHAM for numerical solution of NVIEFK

These two approaches are well defined in [2,3]. We are going to apply OHAM to the Volterra integral
equation of the first kind. Applying the OHAM to Eq. (1.2), results in the following sequential
equations

¢ Do(t)=f(1),
¢' 91 (t) = w1 [§K (1) Vo (u) du,

k—1 k t
) = (L) D () + 3wt () + > e / K (¢ u) 941 (u) du.
=2 =1 70
An approximation of the mth order is considered by
D (twr,wa, .y wm) =V (8) + > Ok (fwi,wa, .., wn)- (2.1)
k=1

Substitution of Eq. (2.1) in Eq. (1.2), gives the following residual

J(t,wl,...,wm):5‘(1&)—f(t)+/th(t,u)1§(u)du, a<t<b.

By least-squares technique, we find optimal values of w;, ¢ = 1,2,...,m. An approximate solution
of order m, is determined, when the parameters w;, i = 1,2,...,m, are known.
In MOHAM, by partitioning the time interval, [0, 77, into N subintervals [0,%1), ..., [ty—1, ], where

t, = T and OHAM will be applied over each subintervals. The solution at the last point, in each
subinterval, denotes an initial approximation to the solution, over the next interval. The process
will continue until we achieve the pre-assigned time, T

3. Numerical Experiments

Here, we are going to demonstrate the ability of the OHA and MOHA methods by one illustrative
example. Also compare the results of OHA and MOHA methods will be compared and computations
will be performed by Matlab Package.

Example 3.1. In this example we study the following equation
t
/ eUn (Y (u))du=¢e —t—1,0<t<1.
0

The exact solution is v () = e'. By the new function ¥ (u) = In (¢ (u)) and resolving the canonical
form, one has,

t
ﬁ(t):et—l—/ e (u) du, 0<t<1,
0

where ¢ (u) = (¥,
The solutions of the first and second orders, in order by MOHA and OHA methods and the exact
solution are shown in Table 1, and Figure 1 A.E of OHA and MOHA methods are plotted in Figure

2.
2
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T T T T T
[|= = =] OHAM solution - Exact solution |

0.12
——| MOHAM solution - Exact solution |

; ;
Exact solution

----- OHAM solution %
©0 MOHAM solution /.’

2.6 -

0.1}

24+

221

1.2

1
0.8

1 1 1 1
0 0.1 0.2 0.3

L
0.4

1
0.6

1
0.7

0.02 -

Figure 1: Exact and solutions by OHA and Figure 2: Presentation of A.E of OHA and
MOHA methods.

MOHA methods.
Exact and solutions by OHA and MOHA methods.

Table 1:
t; Exact OHAM A.E. OHAM MOHAM A E. MOHAM
0.0  1.00000000  1.00000000 0.00000000 1.00000000 0.00000000
0.1 1.10517091 1.10636693 0.00119602 1.10474466 0.00042625
0.2 1.22140275 1.22617980 0.00477705 1.22124851 0.00015424
0.3 1.34985880 1.36031132 0.01045252 1.35026852 0.00040972
0.4 1.49182469 1.50920420 0.01737951 1.49230448 0.00047979
0.5 1.64872127 1.67259169 0.02387042 1.64743849 0.00128278
0.6 1.82211880 1.84912703 0.02700823 1.82187478 0.00024402
0.7 2.01375270 2.03591953 0.02216683 2.01330065 0.00045205
0.8 2.22554092 2.22799618 0.00783915 2.22503445 0.00050647
0.9 2.45960311 2.41774538 0.04185773 2.45951469 0.00008815
1.0 2.71828182 2.59445603 0.12382582 2.71962653 0.00134471

4. Conclusion and discussion

In the present study, NVIEFK have been solved using OHA and MOHA methods. Comparison with
OHAM results higher accurate respect of applying MOHAM, especially for the nods further from
the initial point. The numerical experiments support this claim, figures are plotted to show the
comparison between approximate and the exact solutions with of these experiments. Furthermore,

MOHAM is reliable and effective for to obtain approximate solutions of the NVIEFK.
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Easy Java simulations software for numerical modeling

Amir Pishkoo, Maedeh GholamAzad

Abstract. “Easy Java simulations” is an application software for performing physical simulations.
“Photoelectric effect” simulation is an example of simulation in EJS software. To perform this sim-
ulation in the introduction section, first, the three main work panels of the program are introduced.
We have used Figure 1 as background (from the reference on page 117 of the Physics textbook
(3), 12th grade, Mathematics and Physics, 3rd year of secondary education at high school in Iran,
Chapter 5: Introduction to atomic physics), and using EJS turned the image of an experiment into
a virtual experiment (executable Jar file). This Jar file is the final product of this research ,while
in the main results section, we explain the details of our work.

1. Introduction

Computer simulation is inextricably linked to computer modeling. A model is a mental represen-
tation of a physical system and its properties, and modeling is the process by which we create
them. A computer simulation is a model implementation that allows us to test the model under
various scenarios in order to learn more about its behavior. Easy Java/Javascript Simulations is
a modeling tool that allows scientists, not just computer scientists, to create simulations in a va-
riety of programming languages. Easy JavaScript Simulations is a free open-source tool that has
acquired a significant role in physics instruction, with over a thousand simulations available in the
ComPADRE digital library [1,2].
To tackle simulation challenges, a variety of softwares are utilized, including

¢ MATLAB is a bundle of coding, modeling, and simulation tools produced by MathWorks.

e COMSOL Multiphysics is a multi-physical simulation pioneer and the most powerful simula-
tion software available.

e« GAMS is a coding and mathematical optimization high-level modeling system.

o If the primary goal of the simulation is to visualize the problem and instructional objectives,
the Easy Java Simulations (EjsS) application is an excellent choice for the user.

EjsS automates tasks such as animation and numerical solution of ordinary differential equations.
There are three modeling workpanels in Easy Java/Javascript Simulations [3,4]. To create the
model and its graphical user interface, we use a series of workpanels provided by the program.

Keywords: Simulation of ODE models, numerical modeling, animation.
AMS Mathematical Subject Classification [2010]: 65Y04, 34C60, 81T80.
YA
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2. EJS and three main workpanels

Working with EJS, we typically perform tasks such as selecting a numerical algorithm, specifying a
differential equation or writing problem-solving codes and commands to run simulations, designing
view elements that generate motion and animation.

The first panel, Description, allows us to build and modify a multimedia HTML-based narrative
that describes the model.

The second work panel, Model, focuses on the modeling process. This panel is used to create
model-specific variables, initialize them, and create algorithms that describe how the model changes
over time.

The third work panel, View, is in charge of creating the graphical user interface (GUI) that
allows users to manage and view the simulation’s results. This program replicates Hertz’s discovery
of the photoelectric phenomenon [5] in 1887, which Einstein theoretically characterized in 1905. A
metal is illuminated by a specific frequency of light (and energy) Fig.1.

Electrons are ejected and can produce a current if the frequency (energy) of the light is greater
than the metal’s work function, W. (which is shown in milliAmperes). If the energy of the light
is greater than the workfunction, these photoelectrons will have kinetic energy. Electrons can be
prevented from reaching the plate and current from flowing in a circuit if they are exposed to an
electric potential.

3. Main results

In this simulation, the items of light waves (sine waves), electrons (set of particles), material button,
and galvanometer must be designed and built. When the play/pause button on the user interface
is pressed, the model’s time evolution begins.

Vacuum Quartz window

/

—
Tt
@) !
\_/

Galvanometer

Incident light beam

Figure 1: Experimental setup of photoelectric effect: snapshot of the final product of this research
as a Jar file.

When you click on the Evolution panel, as shown in Fig.2, the ODE editor appears. The step
size is determined by the increment. By advancing the state in discrete stages, numerical techniques
approximate the exact ODE solution. Each view element has a set of internal attributes known as
properties that govern how it appears and behaves.
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' [ Properties for tick - S— p ()
i Humber of Elements Visibility and Interaction Graphical Aspect
#Elements p Visible true style =)
e oriset (=)
oS Draggable false Rotate =)
F Sensitivity Line Color ightGray E
Bz Interaction in... Fill Color ightGray (&=]
Positon Array on press sroke 0 (=)
Size X 0.005 R
sizeY 0.005 e —
=z OnEnter
size Array s
Pixel Size
Scalex
scaleY
Scalez

Figure 4: creating set of particles (electrons).

© Description © Model © View
© Variables © Initialization © Evolution © Fixed relations © Custom © Elements

Frames | Evolution Page

per second

> top | Inicializagninit);
ninit++;
IfErinit==r-1) ninit=0;
if( t= teontral ){

= amperes = ((doublejintensityAicontral;
intensity =0;
t=00;

& | = (nmed*+amperes)(nmed+1};
nmed += 1.0;

]
1 |ifarg =0 j<n;

avanzaij);

i ¥[j] = xcollector && y[j] 1.3 ){
5 intensity++

viil =20

}
FPS|  100]||t += gt

totattime += dt;
L
Autoplay | Comment

Figure 2: time evolution of the problem.

By double-clicking on the element in the tree, we can access the properties inspector table and
change these attributes. A model variable can also be used to set an element’s property (Fig.3,
Fig.4, and Fig.5). The ability to connect (bind) a property to a variable without programming is
critical for converting our static representation into a dynamic and interactive one.

" [ Properties for analyticCurve {Analyticcurve) I -
f et Visibilty and Interaction
Points 300 (== Visible true
Minimum 0.37 [Hle=]  measurea
Maximum 0.1 [Z¥=]  oraggavie faise
Variabe "p" [He=]  oragGroun
X0 0.6+0.09'Sin(30000°pAlambda-10 O*totaltime)" [(H[e=]  sensitvity
Yo 'p [C¥[==] on parse error
Java Syntax faise [#8[e=] on arse suc.
OnPress
Posx (E7E0 -
Pos (510 p—
Position Array [ ——
siex Bl onen
sizeY [He=]
size Array [C¥[=]  wie color igntcolor
Transform | unewian 2

Figure 3: making Sine waves (light).
AO



50

Easy Java simulations for photoelectric effect
' Properties for materialbutton (Particle) i T - ﬂ
] Position and Size Visibility and Interaction Graphical Aspect
Pos X naterialbuttonx Visible [true Style EB
Pos ¥ materialbuttony Measured Offset EB
PosZ 0.0 Draggable true Rotate
Position Ar... Sensitivity Line Color
Size X On Press (sodium = Isodium. Fill Color B2
SizeY On Drag Stroke (D)=
Size Z On Release [=
Size Array onEnt [
Pixel Size On Exit E
Scale X
Scale Y
ScaleZ

Figure 5: changing material button.
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A reduced-order difference potential algorithm based on
POD method for parabolic interface problem

Mahboubeh Tavakoli Tameh, Fatemeh Shakeri

Abstract. We present a rapid and effective method for the numerical solution of the parabolic
equation in domains with interfaces. The proposed approach combines the difference potentials
method (DPM) with the proper orthogonal decomposition (POD) technique to improve the com-
putational efficiency of the DPM. Numerical results confirm the efficiency and accuracy of the
developed numerical method.

1. Introduction

The difference potentials method (DPM) is an efficient and strong technique for solving interface
problems and problems defined on domains with complex geometry. This method was proposed
by V. Ryaben’kii in 1969 and is a discrete counterpart of Calderon’s potential theory in functional
analysis [2,3]. It combines some advantages of the boundary element method (BEM) and finite
difference method (FDM) while avoids some drawbacks related to them. The advantages are the
effectiveness of FDM in simple geometries and the dimension reduction of BEM . The avoided
drawbacks by this method include the difficulty of FDM to handle the complex regions, and the
requirement of BEM to the fundamental solution and evaluating singular integral kernels. In DPM,
first the value of the solution is calculated at the discrete grid boundary (the grid points close to
the boundaries of the original domains) by constructing pseudo-differential boundary equations [1].
Then, these values are used in the discrete generalized Green’s formula to obtain the values of the
solution in the original domain. The purpose of this paper is combining the second-order difference
potentials method and the POD technique to improve the computational efficiency of DPM for
solving the parabolic equations.
We consider the following parabolic interface problem

ou  0%u
—t — = t) € Q) T 1.1
o= (wHenx 0T, (11)
with initial condition as
u(z,0) =u(z), x€Q, (1.2)

boundary condition on the points £ = a and x = b as

u(a,t) = a(t), u(b,t) = p(t), (1.3)

Keywords: Difference potentials, Calderon’s operators, Interface problems.
AMS Mathematical Subject Classification [2010]: 35Exx, 65M06, 82B24 .
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and interface condition at ( as

u(C D)o, — u(C;)lg, = ¢1(t), € (0,T], (1.4)
Ux(Cat)‘Ql - UI(Cat)’QQ = ¢a(t), t€(0,T],
where Q := [a,b] C R is a bounded domain separated by interface point ¢ into two disjoint subdo-
mains Q := [a, () and Qg := (¢, b]. The source function f is piecewise smooth but can have a jump
along the interface, hence the solution of this problem may be discontinuous along (.

2. DPM algorithm

In thi

s section, we describe the main steps of the algorithm based on DPM for governing interface

problem. The details of DPM strategy are represented in [1, 3].

Step 1: For each subdomain ., e € {1,2} introduce an Auxiliary domain 20 and formulate
the Auxiliary Problem.

Step 2: Disceritize the Auxiliary Problem by the finite difference schemes (first-order in time

and second order in space) as LAt,h[u?H] = FZ»"H, x; € NT.

Step 3: At each time level t"*!, for each subdomain €., calculate a Particular Solution,
u?“ =G At’hFi"H as the solution of the Auxiliary Problem.

Step 4: Compute u,’;‘jl wich is the solution at the discrete grid boundary 7, (the grid points
close to the interface) by solving the coupled system of Boundary Equations with Projections
(BEP).

Step 5: Calculate the Difference Potential Py ugljl from the obtained u;ljl in the previous
step.

Step 6: Finally, approximate the solution using the generalized Green’s formula u(z;, ") ~
Pl 4+ Garn B

3. A POD based reduced-order difference potential method

The POD method offers an orthogonal basis for representing a given data set. It is helpful to reduce
the dimensions of the numerical computational models for time-dependent PDEs and save CPU time
for large-scale scientific computing. Here, we use this technique to improve the efficiency of the DPM
algorithm for solving the parabolic equation. We briefly represent the steps of POD-DPM as bellow

n

Step 1: Find the solution sequence {u?}L_, from the first steps of Particular Solutions

{ul nN:p (1 <i<m,L << N), where m and N are the number of space and time steps,

respectively.

n

Step 2: Then, formulate the snapshot matrices A = (ul'),,x1 and calculate the eigenvalues

A1 > X2 > ... >\ > 0, where r = rank(A), and the eigenvectors ¢ (k= 1,...,7) of A'A.

Step 3: Select the number M (M < r) such that /Ay41 < e for the error tolerance ¢ =
O(At, Ax?). Then construct the POD basis ® = (@1, 2, ..., oar), where @ = Ady /v Ak =

1,2,..,M).
AY
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e Step 4: Then, obtain the POD-DPM by replacing «” in the definition of Particular Solution
with v*" = ®6" (n = L+ 1,..., N) where 6™ are vectors yet to be determined.
Similar to the theorem represented in [4], the following theorem can be proved.

Theorem 3.1. The following relation is hold for the error between the Particular Solution
u"™ from DPM and the u*" from the POD-DPM

Hu"—u*nH2 < E(n)\/Apm+1, n=1,..,N,
where E(n) =1 (n=1,...,L) and E(n) =exp(n—L) m=L+1,..,N).

o Step 5: Check accuracy and update POD basis to continue. If E(n)y/(Aym+1) < € the

requirement accuracy is satisfied, else set u! = u*("*L), ul = w1

2.

and go back to Step

4. Numerical results

In this section, we present a numerical example to show the performance and accuracy of the
proposed method for solving the parabolic interface problem. We consider 2 = [—0.5,0.5] and ¢ = 0.
Also, we select the Auxiliary domains QY = [~0.7,0.2] and Q9 = [~0.2,0.7] for subdomains Q; and
s, respectively. Also, we set L = 10, final time T" = 6 and time step size equal 0.001. Designed
algorithm is implemented with MATLAB R2018a running on a desktop with Intel(R) Core(TM) i5-4200M
CPU @ 2.50GHz 2.50 GHz and 6 GB memory. The exact solution of this example as studied in [1] is given
by

28 exp (—t), —-05<z<0,

u(z,t) = { %(ﬁ + 28)exp(—t), 0<z<0.5,

(4.1)

Table 1: The error and convergence rate of DPM and POD-DPM.

N EI‘I‘OI‘(DPI\A) order ETTOY(POD-DPM) order
40  7.6509e — 08 * 7.1902e — 08 *

80  1.9535e — 08 1.9696 1.8185e — 08 1.9833
160 5.0469¢ — 09 1.9526 4.6280e — 09 1.9743
320 1.3214e —09 1.9333 1.2088e — 09 1.9368

Table 2: Comparison between CPU time obtained of DPM and POD-DPM.

N DPM POD-DPM
160 5.147186 1.672115
320 17.099635 2.277276
640 73.871677 3.574449
1280 435.560937  6.816560

Since the exact solution is known, we calculate the source term, Dirichlet boundary conditions and
interface jump conditions on the interface ( = 0 according to the given exact solution. The grid refinement
analysis and computational time of DPM and POD-DPM are reported in Tables 1 and 2. We see that the
numerical results of POD-DPM are in excellent agreement with those of DPM. Also, by comparing the CPU
time of the POD-DPM with that of the DPM, the advantages of POD-DPM in computational efficiency can

be found.
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Feedback solution for high-nonlinear
Hamilton-Jacobi-Bellman equation by a pseudospectral
domain decomposition technique

Mehdi Ghasemi, Homa Shirmardi, Mohammad Maleki

Abstract. In this paper, we present a new pseudospectral scheme for solving a class of high-
nonlinear optimal control problems. First of all, the Hamilton-Jacobi-Bellman equation is for-
mulated. Then, we approximate the cost functional using the method of pseudospectral. The
operational matrix of differentiation and the Gauss method are then utilized to reduce the optimal
control problem to the solution of algebraic equations.

1. Introduction

Optimal control is one of the most important branches of the mathematics. For nonlinear systems
the optimal state feedback control is obtained by the Hamilton-Jacobi-Bellman (HJB) equation
[1]. This equation is difficult to solve, thus approximation techniques for obtaining solutions are
important. In addition to linear systems, the nonlinear systems are also very important, because
they are applicable in industry, say, in reactor systems, flight control systems and aircraft design [2].
In the year 2000, an upwind method for approximating the viscosity solutions of HJB is presented by
Wang et al. [3]. Their method is based on an explicit finite difference scheme, the stability of method
under some mild conditions is proved. Huang et al. [4] proposed a semi-meshless discretization
scheme based on radial basis functions for approximating viscosity solutions of HJB.

2. HJB equation

A vast amount of literature exists on optimal control problems of the Bolza form

T.
21(1615{1 J(s,x,u) = SffL(t,y(t),u(t))dt + h(y(Ty)) (2.1)

st y(t)=fEyd)u)), te(sT yls)=x,

where u(-) is the control function, y(-) is the state function, L(-) is the running cost, h(y(T¥))
is the terminal cost, f(-) is the vector-valued transition function, g(-) is the integrand function,
(s,x) € [0,Tf) x R, and U is the set of admissible controls. We introduce the value function v
defined by v(s,x) = 516115 J(s,x,u) using dynamic programming approach, the problem (2.1) can be

formulated as HJB equation plus its terminal term condition

—vs +sup (—vx - f(s,x,u) — L(s,x,u)) =0, (2.2)
uelU

Keywords: Nonlinear optimal control, Pseudospectral method, Hamilton-Jacobi-Bellman, Feedback solution.
AMS Mathematical Subject Classification [2010]: 49J20, 65M70.
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v(Ty,x) = h(x), (2.3)

where v(+) is the value function, h(x) is terminal condition and - stands for inner product. Here,
we have two unknown functions, u(-) and v(-). The control u which achieves minimum is called
optimal control, which we show it by «*, if we could find a relation of the form u*(t) = g (¢,x(t))

2.1. Approximation by interpolation

Let —1 = 79,71,...,77v = 1 be N + 1 distinct nodes in [—1,1], and lx(z), k = 0,..., N be the
N

T—Tj
Tk*‘l‘j

Lagrange interpolation polynomials based on this nodes, which are defined as ly(z) = ][]
J=0,j#k

with the Kronecker property li(7;) = 0x;. The polynomials [(xz), k = 0,...,N form a basis

for the space of the polynomials of degree less than or equal to N. A function f(x) defined on

N
[—1, 1] may be approximated by Lagrange interpolation polynomials as f(z) = > f(7x)lx(z). The
k=0

above approximation can be written in the following matrix form f(z) ~ ®%(z)f where f =

[F(70), ..., f(rn)]" and ®xn(2) = [@o(x), ..., on(2)]". From the Kronecker property, we conclude
Oy (1) =ej, j=0,...,N where e; is the jth column of the identity matrix of dimension N + 1.

mj .
;= — =0,...,N 2.4
Tj COS<N>7 j ) I ( )

3. The proposed Hybrid method

Theorem 3.1. Consider the problem (2.2)-(2.3) in one dimensional case, then solution can be
written as:

v(s, ) ~ L (s)vd,, (), (3.1)
l1(s) lh(x)
, l2(s) la(z) .
which ®,, and ®,, are as follows ®,(s) = | . N = where l; is ith Lagrange
ln(s) U ()
function. By differentiating with respest to s and x, we will have
vs(s, ) = ®L () Dpv®,, (), (3.2)
ve(s, ) = L (s)vDL &, (x), (3.3)

where Dy, and D,, are differentiation matrices with respect to s and x.
Then, replacing (3.2)-(3.3) in HJB equation we get

—0L(s)Dv®,, () + sug {—@g(s)vDZ@@m(y)f(s, z,u) — L(s,z,u)} =0, (3.4)
(S
Collocating this equation at points (1;, ;) , i=1,....n—1, 7=1,...,m we conclude

—[Dyv],; + sup {—[vD%]ijf(s,a:,u) — L(s,m,u)} =0, ¢=1,....n—1,5=1,....,m, (3.5)
ueY

The above equation can be reformed to the following matrix form

_[Dnv][lzn—l,:] + sup {_ [UD;{’L

f(s,z,u) — L(s,:v,u)} =0. (3.6)
ueU

:| [1:n—1,:]
AV
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Finally, we have a system of algebraic equations (3.6) with initial condition v(1,x) = h(x), at points
xj, j=1,...,m; which can be solved by iterative schemes like Newton method.

3.1. Domain decomposition

Let us in one dimensional case, for Q = [a,b], take Q = [a,ag],[ap,a1] U -+ U [an—1,b] when
ag,ai,---,a,—1 are the points that derivative does not exist. The following theorem shows the
efficiency of the proposed method using domain decomposition technique.

Consider one dimensional case, for Q = [a,b], take Q = [a, ao], [ao,a1] U --- U [ap—1,b] when
ap,ai,. .., an—1 are the points that have no derivative, then the solution to (2.2)-(2.3) can be written
as

vl(s, 1), z1 € [a, ag)
v2 (s, z1), z1 € [ap,a1]
v(s,x1) =

V" (s,21), 21 € [an_1,b].

4. Ilustrative examples

In this section, we begin by demonstrating the performance of the proposed method developed
in Section. MATLAB function ode45 is used to solve the system of differential equations with
terminal conditions. This solver controls the error by two parameters RelTol and AbsTol. We set
RelTol=1le-11 and AbsTol=1e-9.

To assess the accuracy of the method, the following averaged absolute error is reported: E,, =
#H |VEzact (t,x) — v(t,X)|| o, Where v qe and v are the exact and computed solutions, respectively.

4.1. Example 1
Consider the following system [4], for x € [—1, 1],
min —y(1)
(Hu(t) telo,1], y(0) ==z, (4.1)

s.t. y(t) =y
u(+) : [0,1] — [0, 1].

Corresponding HJB equation is

—vg+ sup (—zu(t)vy) =0,

Osusl (4.2)
v(l,x) = —x.
Collocating this equation, we conclude
D]y, + sup {— [vD] ] xju(t)} =0. (4.3)
) 0<u<1 [1:n—1,:]

If the array (4,j) in matrix [vDL ] 2; is positive, we set u(t) = 0, otherwise we set u(t) = 1. Since
(4.3) is discontinuous in z = 0, we apply the multidomain strategy with m = 1 and [-1,+1] =
[—1,0]U[0, 1]. Then, we solve system of algebraic equations (4.3) with initial condition v(1,z) = —=x,

at points zj, 7 =1,...,m.
AA



Feedback solution for high-nonlinear ...

Table 1: Comparisons for the averaged absolute errors in Example 1.

Method in Ref. [4] Method in Ref. [6] Current method
m Error m Error m Error

5  1.575 x 10 2 3 3.7898 x 10 3 2.1526 x 10 ™2
9 534x1073 5 22742 x 1071 5 2.1526 x 10712
14 218 x 1073 7 1.6239 x 1071 7 21526 x 10712
26 6.59 x 107* 9 1.2623 x 107 9  2.1526 x 10712

—zelt, x>0,

—x, z < 0.
imate value function from the methods in [4], [6] and the present one are given in Table 1; which
demonstrates high accuracy of the method. When the number of nodes increases, it is expected
that the pseudospectral solution will generate the optimal control solution with error close to zero.

Exact value function is as follows v(t,z) = Computed errors of approx-

5. Conclusions

In this paper, we discussed a new technique for the optimal control of high-nonlinear continuous-
time systems based on pseudospectral method. The main advantages of this approach lie in good
accuracy, very low numerical complexity, easy implementation and finding a feedback solution.
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A numerical method for solving multi-variable order
fractional integro-differential equations using the
Krall-Laguerre polynomials

Hadis Azin, Ali Habibirad

Abstract. In this work, the variable-order fractional Caputo derivative is used to define multi-
variable order fractional integro-differential equation. The orthogonal Krall-Laguerre polynomials
are used as basis functions to construct a numerical method for solving such problems. In the
established method, these polynomials are applied to transform the main problem into an algebraic
problem that can be easily solved. Some examples are considered to show the accuracy of the
method.

1. Introduction

Fractional and variable order derivatives can be applied in characterizing hereditary properties of
dynamical systems with uniform and non-uniform memory, respectively [1]. Therefore, developing
numerical algorithms for solving variable-order fractional equations is significant. Some authors have
proposed several numerical and approximation methods for solving such equations, the interested
readers are referred to [2,3]. In this paper, we follows study the multi-variable order nonlinear
integro-differential equations as

Zb 602 = [ Kalr Ot + i [ Kl Ot ), (1)

with initial conditions y®)(0) = g for I = 0,1,--- ,max[3;(x)] and = € [0,1]. Moreover, s,n4
and ng are positive integer numbers, ;1 and po are real numbers, bj(x), Ki(x,t) and Ka(x,t) are
given known functions and SDEj(m)y(x), (n —1 < Bj(xz) < n)is the B;(x)-th Caputo variable-order
fractional derivative expressed by

d"y(z)
: ’ Bj(z) =mn,
S0P y(@) = " v " (1.2)
o SN — _ 18 A1) A
F(n - 5](.7})) /0 (:E t) dtn dt, n—1< ﬁ] (IE) <n.

2. The Krall-Laguerre polynomials

Krall introduced the Krall orthogonal polynomials. These polynomials are eigenfunctions to fourth
order linear differential equations [4]. The Krall-Laguerre polynomial of order o > 0, Lg () of

Keywords: Multi-variable order fractional integro-differential equation, Krall-Laguerre polynomials, Caputo fractional
derivative.
AMS Mathematical Subject Classification [2010]: 34A08, 33C45, 41A10.
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degree k € NU {0} is given by

Application of the Krall-Laguerre polynomials

k i

Lok(z) = (E:Lli)! (f) (i(a+k+1) +a)z'. (2.1)

=0

The set of Krall-Laguerre polynomials form an orthogonal system on [0, +00) with

+oo
(Lo (), Lo (@) = /0 Lo k(#) Lo g ()6 + (L g (O)L, £(0) (2.2)

Theorem 2.1. Suppose that L j(x) are the functions introduced in (2.1) and f(z) € (n —1,n].
Then, we have

¢ 1HB(z) ) = D(n)La,k(x)v ,8($) =n,
0D La(@) = {Dﬂ(x)La,k(x), n—1<p(x)<n. (2:3)
where
D™, (z) = Z éjrli)! <Z§> (i(a+k+1)+a)(i—n+ 1),
= , (2.4)
-1 [k i :
D@L, (z) = Z (E ﬁ)! <Z> (il +k+1) +a) e i(lt;)(x))mz—ﬁ(w).

=

=n

3. The proposed method

To construct a numerical technique for the problem given in (1.1), we approximate y(x) as y(x) ~

m

> kLo g(z) := CTV,(x) where C is an (m + 1) unknown vector. Theorem 2.1 yield (C)Dg(m)y(x) o~
k=0

CTDFi@ W, (z). Substituting this relations into (1.1) results

S 1
R(r) 1= 30by(a) CTDHT, (@) — oy | Ko (0, )(CT 4 (1)
j=1

— pi2 / Ko (2, 1)(CT W (1)"2dt — f(z, CTWo(x)) ~ 0,
0
A:=C'DYW,(0) -y ~0  1=0,1,..., max[8;(z)].

Eventually, we obtain a system of (m + 1) equations by inserting the shifted Chebyshev collocation
points z, in [0, 1] for r =1,2,...,m — max|[§;(x)].

4. Numerical results

Example 4.1. Consider the problem
1
26D Wy(x) — §DEy(z) = 56/ (z + t)y(t)*dt + f(z,y), (4.1)
0

with initial conditions y(0) = 1 and 3/(0) = —3. The exact solution is y(z) = 2? — 3z + 1. Also, we
obtain the source term f from the exact solution. In [5], this problem has been solved by considering
Bi(z) = 353%3 and f2(z) = £. The absolute error obtained in [5] is 107 with m = 2 (the Bernstein

polynomials) while, we get the exact solution with m = 2 and o = 1 by using our method.
Q)
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Example 4.2. consider the problem
1 T
6D y(w) +§ DYy (x) :/0 art(y(t))thJr/O (z — t)y(t)dt + f(z,y), (4.2)

with initial conditions y(0) = 3/(0) = 1 and f1(z) = 1.8 — 0.45sin(z), S2(x) = 0.8 — 0.3 cos(z) and
f is extracted due to exact solution y(z) = e” as

T — x—ﬂl(m) x)— ! - ’
f(z,y) (Elul—f‘l(z)( ) I(1—pi(z) T(2- 51(53)))

1

(4.3)
3
+ g P2(2) <E17152(I)(x) — T = 52(@)) + 1 x+1—y(z),

where E is the Mittag-Lefler function. The obtained results are provided numerically and graphi-
cally in Table 1 and Fig. 1 with o = 1.

Table 1: The L, errors for Example 4.2 with some values m.

m Loo CPU time (s)
5 1.9234F — 04 0.671
7 1.0547F — 08 0.813
9 5.6858FE — 10 0.875
11 4.3269F — 13 1.234

-14
10
= - 28

O Exactsolution
268 | ——— Numerical solution

1.2

Absolute error
o
=]

o 01 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1 o 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1

Figure 1: The graphs of absolute error (left), and the exact and approximate solutions (right) for Example
4.2 with m = 12.

5. Conclusion

In this article, the multi-variable order fractional integro-differential equation has been generated by
using Caputo fractional derivative. The KrallLaguerre polynomials have been successfully extended
for solving this equation. Using the presented method, the problem was reduced into a nonlinear
system of algebraic equations and solved readily by the ”fsolve” command of Maple software. The
obtained numerical solutions maintain excellent accuracy in comparison with the exact solutions.

QY



50

Application of the Krall-Laguerre polynomials

References

1]

D. Baleanu, Mendes, A. Lopes Handbook of fractional calculus with  ap-
plications, Applications  in  engineering, life and  social  sciences, 2019,
https://www.degruyter.com/document /doi/10.1515/9783110571929-fm /pdf.

R. M. Ganji, H. Jafari, D. Baleanu, A new approach for solving multi variable orders differential
equations with Mittag—Leffler kernel. Chaos Solitons Fractals 130 (2020) 109405.

H. Dehestani, Y. Ordokhani, M. Razzaghi, Pseudo-operational matrix method for the solution
of variable-order fractional partial integro-differential equations. Engineering with Computers,
37 (2020) 1791-1806.

H.L. Krall, On orthogonal polynomials satisfying a certain fourth order differential equation,
Pennsylvania State College, 34 (1940) no. 34.

N. S. Tuan, Nemati, R.M. Ganji, H. Jafari, Numerical solution of multi-variable order fractional
integro-differential equations using the Bernstein polynomials, Engineering with Computers, 38
(2020) 139-147.

Hadis Azin
Department of Mathematics, University of Hormozgan, Bandar Abbas, Iran
email address: H.Azin1370@gmail.com

Ali Habibirad
Department of Mathematics, Shiraz University of Technology, Shiraz, Iran.
email address: a.habibirad@sutech.ac.ir

qy



T The 9*" Seminar on Numerical Analysis and its Applications

8§
MATHEMATICAL,

-

= S
% g

9-11 May 2022, University of Guilan, Rasht, Iran

University of Guilan

Sparse two-greedy subspace Kaczmarz method with oblige
projection for compressed sensing

Farshid Abdollahi, Fatemeh Pirayesh Dehkordi

Abstract. Kaczmarz method is one of alternating projection methods and is an iterative method
for solving large-scale systems. In this article, we use the two-greedy subspace Kaczmarz method
with oblige projection to generate sparse solution. The sparse system solution is obtained by oblique
projecting the current solution on the hyperplane generated by two the active row. This method
improves the convergence speed compared to other Kaczmarz method with oblique projection.

1. Introduction

Due to the signals in the real world are either sparse themselves or can be approximated by sparse
signals, obtaining a sparse solution from a system of equations is of particular importance. This has
led to the development of the theory of Compressed Sensing(CS) [2]. Here we use Iterative Hard
Thresholding (IHT) Algorithm [5] because it has less computational complexity than other existing
methods for CS. Two-greedy subspace Kaczmarz method with oblige projection can basically be
used to generate a solution for consistent system of linear equations. But by designing a series
of weights, the sparse solution can be obtained for a system of linear equations. i The signal
reconstruction problem is formulated as follows:

min ||z||o,
sit: Az =y, (1.1)

where z € R" (n < 00) is the signal that we want to reconstruct it, ||z||o represents the number of
nonzero entries of x, A € R™*" is the measurement matrix, m < n and y € R™ is the measurement
signal. This is a nonconvex optimization problem and has exponential computational complexity.

Due to the NP-hard of Problem (1.1), we consider the following problem, which is a convex
problem:

min ||z,
sit: Az =y, (1.2)

and plays an important role in CS theory. The THT algorithm is an iterative method to reconstruct
the original signal as follows:

2 = Hy(2® + pAT (y — Az®)), (1.3)

where p is the step size in each iteration and Hj, is the hard thresholding operator (It sets all but
k largest entries (in magnitude) of x to zero).

Keywords: Compressed Sensing, Kaczmarz Method.
AMS Mathematical Subject Classification [2020]: 65F10, 65F50, 15A29..
q¥
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2. Two-greedy subspace Kaczmarz method with oblige projection

In [3], Two-Greedy Subspace Kaczmarz method is used to solve large-scale systems. In this method,
two rows of measurement matrices are selected based on the ordered residual vector and current
iterate orthogonal project onto the solution space given by these two rows. We use the Kaczmarz-
type method with given oblique projection d € R™ | defined by

= ph (ab). (2.1)

The choice of direction is such that it increases the speed of classical Kaczmarz method. In this
article, we use the direction

< Gy, Qi g >

i

d=a;_ , — @iy
where a; is the i-th row of the matrix A.
The index set of non-zero entries of vector x is denoted by supp(x). For the original signal x

with |supp(z)| = k, the support set S is defined as
S = SUPDpaain’ m—ji1y (@D), (2.2)

where S selects |max{k:,, n —j + 1} large entries of () in magnitude and k' is estimated support
(k' > k). First we generate the following weight vector.

1, lebs,

(4) _{
W=y L c (2.3)
75 leS~.

The two selected rows s; and t; are replaced by a;j =w®as; and a;j = w®ay;, where © is denoted
the element-wise product.

The iterative hard thresholding algorithm based on two-greedy subspace Kaczmarz method with
oblige projection is expressed in Algorithm 1.

3. Numerical results

To illustrate the performance of the proposed method, we compare it with iterative hard threshold-
ing Sparse Greedy Randomized Kaczmarz with oblige projection [1] and sparse maximal weighted
residual Kaczmarz method with oblique projection [4]. We tested the convergence rate of sig-
nal reconstruction for the IHT-S2GSKO, IHT-SMWRKO and the IHT-SGRKO algorithms with a
256 x 512 random measurement matrix A with independent identically distributed (i.i.d.) Gaussian
random entries. We tested this method for 100 different signals with sparsity between 30 and 60.

4. Conclusion

In this paper, we used two greedy subspace Kaczmarz method with oblige projection to improve
the convergence rate of the iterative hard thresholding algorithm. Numerical results show this well.
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Algorithm 1 THT-S2GSKO

Input: A,b, support estimate k/, stopping threshold 7,z°
Output: 7;
Compute: 7 =b— Az©
S = arg mari<i< ]r(i)] and t = arg maz; ]r(i)\
<i<m|T ie[m]\sl"1

1 0, bs—<as,x(O> T | bi—<ap,z(O> T
=) 4 2t 2 (g e (1)
o= B (e g (@)

Initialization: j =2

. 2+ —g(@) 12
while ( —rop

rj =b— Az
Select rows s; and t} that satisfy

<n) do

$j=arg maw1§¢§m|r§-l)| and t; = arg MATicm)\s; |r§z)|
Set the support estimate S = SUPD, 1! n_j_H}(x(j))

. . () 1 leS
Generate weight vector w@) as w)” = L e g0

) ' A Vi
a, = w9 Oay, 1= t,s,55,t;
’ / ’ /
Dy = (a,,ay) and Dy = <at,at}>
’ . ’ ’
r1 = by, — <a§7_,w]> and ry = by — (a . ,z’)
- J
1_ D1 ’ D1’
vt = asﬂ- - / tA_ - ’ 2at
. Jl llasll2 , ) i lagllz
h* = [|v*|| and A" = [|v*|
Ts‘j Tt}
a1 = 5 and a9 = e
x(]+1) — x(]) _|_ O[l’Ul + 012'1)2
s = Sj,t = tj
end while
7 = )

!/
2 _
za, and v° = a

40

IHT-S2GSKO
IHT-SGRKO
—¥— IHT-SMWRKO

IHT-S2GSKO
O= IHT-SGRKO
—¥— IHT-SMWRKO

35

40 45 50 55 60 35
sparsity(essup=1.8*k)

35

45 50 55
sparsity(essup=2*k)

40 60

Figure 1: The average convergence rate of the IHT-S2GSKO,IHT-SMWRKO and the IHT-SGRKO

method
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An hp-version collocation method for weakly singular
integral equations

Khadijeh Nedaiasl, Raziyeh Dehbozorgi

Abstract. We investigate the numerical solution of a class of nonlinear first kind integral equation
with weakly singular kernel. An hp-version of collocation method based Jacobi polynomials are
introduced and applied and the method is properly analyzed. The numerical result for a test
problem with singular solution is presented.

1. Introduction

We deals with the numerical solution of the nonlinear weakly singular Volterra integral equation of
the first kind

Ku(t) := /Ot(t —8)* th(t, 8)(s,u(s))ds = f(t), 0<a<l, 0<t<T<oo, (1.1)

where k(t,s), ¥(s,u(s)) in the kernel and f(¢) the right-hand side term are known and u(t) is the
unknown to be determined.

The weighted Lebesgue spaces are utilized as the suitable functional spaces. Let define the
weight function xy®?(z) := (1 — 2)*(1 + 2)” on the interval A := [~1,1] for o, 3 > —1. For r € N,
H;a, 5(A) is a weighted Sobolev space defined by

H;aﬂ(A) = {v | v is measurable and [[v]|, a5 < oo}7
where

T 1
2
TvXOCYB - i a8 :
Jol o2
k=0

The semi-norm is defined as [v[j, yas = H@’;U||Xa+r,5+r. For arbitrary real number r = [r] 4+ 6 with
6 € (0,1), H;Qﬁ (A) can be defined by the interpolation space as

More details can be seen in [4].
We recall the definition of the Riemann-Liouville integral operator ¢Z7,

oTru(z) = /O (o — O lu(t)dt, (1.2)

Keywords: nonlinear operator, first kind Volterra integral equation, weakly singular operator, hp-version collocation
method. .
AMS Mathematical Subject Classification [2010]: 45H30; 45D05; 65L60; 65L70..
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Theorem 1.1. Assume that the Eq. (1.1) satisfies the following assumptions
i f(t) S H;afl,O(Q); f(O) — 0,
ii k(s,t) € C"(QxQ) and k(t,t) #0 for allt € Q,

An hp-version collocation method

i (s, u) € B (2 x R),

iv 1nf{|¢su|‘su GQX]R}>M>0

v (s,u) is Lipschitz continuous w.r. to u,

vi et k(t fo f ~(y — 2) k(y, 2)Y(z, u(x)) dy dz, then k € H;na__lw (Q).
Then it has a unique solution u in H;na__lw(Q).

1.1. Preliminaries

The shifted Jacobi-Gauss interpolation operator. Let us denote the standard Jacobi poly-
nomial of degree k by J;' P (x), for a,, B > —1. Tt is well-known that the set of Jacobi polynomials
makes a complete orthogonal system with respect to the weight function y®?(z) which means that

t/‘J?ﬁ(x)J?ﬂ(x)Xaﬂ(x)dx::'7?ﬂ5hj, (1.3)
A
wherein Jy, ; is the Kronecker function, and
20 AT (a4 DI (B41) k=0
a,f { C(a+8+2) ) =Y,
T = 204841 T(k+a+1)T'(k+B8+1)
Zktatptl BT (ktatptl) =

In order to work with these polynomials on the sub-intervals §2,, properly, the shifted Jacobi poly-
nomial of degree k is also defined as follows
1—tn

0p 2t —tn_
TEP) = I

N ), t€Q,, k>0. (1.4)

Let xo‘ % be the zeros of the standard Jacobi polynomial of degree k for 0 < j < M,, and w,, ’B be the
correspondlng Christoffel numbers. Then we can define the shifted Jacobi-Gauss quadrature points
on the interval €,, as follows

1 .
S (gl + tyoy +10),  0<j < My, (1.5)

B _
tny = 9

Let Pr(£2) be the set of all polynomials of degree at most M on €. It is known from [1,3] that for
any ¢(t) € Pars,+1(€n)

o P (t)dt = (51 Z¢ ol (1.6)
which leads to the result "
Yo Tedte D I e = v 8p (1.7)
7=0

49
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For any v € C(,), the shifted Jacobi-Gauss interpolation operator in the t-direction is defined as
follows

K. Nedaiasl, R. Dehbozorgi

I o) = o), 0 <G < My, (1.8)
and the following lemma reports an upper bound for the interpolation by (1.8).

Lemma 1.2. ( [5]) For anyv € H:aﬁ(Qn) with integer 1 <m < M,, + 1 and o, 8 > —1, we get

I'(M, +2 —m)
o -84, ol o < \/ L, -

(Mp+2+m)
In particular, for any fixred m, we obtain

o = T2 ol ot < (M + 1) [0 ]| armpem < hI (M + 1) | 05]| a5

1.2. The hp-collocation method for weakly singular integral equations

For a fixed integer N, let Qp :={t,: 0 =1y <t1 <--- <ty =T} beasameshonQ, h, :=t,—t,_1

and Amax = ma<XNh Moreover, denote u"(t) as the solution of Eq. (1.1) on the n-th subinterval
<n

of 2, namely,
u(t) =u(t), teQ,:={tp1,tn], n=12,...,N.

By the above mesh, we rewrite the Eq. (1.1) as
tn—1 t
[ = st uleDds + [ (-9 il (s, u(e)ds = £0),

0 tn—1

then for any t € ,, this equation can be written as
¢
/ (t — ) Li(r, )b (r, u" (7))d Z / 1oL, (s, uf(s))ds.  (1.9)
tn—1 Qp

Now, we transfer the interval (¢,—1,t) to €, by the following linear transform

(A= tue1)(t = taa)
ho, ’

T=0(\t) =t,—1+ (1.10)

to get
t—1tn—1

(—

)a/ (tn — N k(a0 1), )0 (o (M ), u(e(A 1)) )dA =

Z/Q )L k(s, ) (s, uF(s))ds.

In the following, we mention some requirements considered in the next section. Let If\)‘]/[ly’lo :
C(2) — P, () be the Jacobi-Gauss interpolation operator. Now, we define a new Legendre-

(1.11)

Gauss interpolation operator Ifx/}yzo : C(tp—1,t) = Pur, (th—1,t) owing to the relation (1.10) with
the following property
~1,0 ‘
I;-X,MTz g(Tn,i) = Q(Tn,i)a 0<1< M,,

where 7, ; = T, i(z) = 0(A,,t) and A, ; are the M, + 1 Jacobi-Gauss quadrature nodes in .
Clearly,
200 °9(70i) = 9(0(Anis 1)) I Al g(0(Nnist), 0<i <M,
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and by Eq. (1.6), we get

An hp-version collocation method

t My
t—tp—
| =T = (S gl (112)
n—1 j:()
Meanwhile, it is noticed that
! a1 (ra—1,0 2 t—1th-1.4 o 9
(t=7)* (T 9(1) A7 = (—5—) > G (Tg)wny. (1.13)
th—1 -
n j=0

These equations will be valid for the Legendre interpolation operator Itan if we take a = 1 and
t=1y.

1.2.1 The hp-version of Jacobi-Gauss collocation method

In order to seek the solution ufy; (t) € Pay, (€2,) of Eq. (1.11) by hp-collocation method, at the first
step this equation is fully discretized as

T4y, (52222 fo, (b = N T k(0 (0 D), (oA ),y (A 1))dA)

1.14)
=T, (f(1) = Mn(}; Jo, (t = 5)27LL ) k(s t)0(s,uly (s)ds), ¢ €, (
where
Thy u(t) = uly (t Za”L np(t
¢ a—10( 1 — a1 - n a-1,0
T, Ton (216 (0 O, 8, (0 (A1), wy, (0 D)) = 3 @ Lup(®) 5OV,
" ,q=0
n—1 pjwk
Zf i ( /Q (=) (s, (s iy, () ds = ;It ,L(;Owé,qmn(téq,t)cz)(té,q,u’m (tko)
My n—1 My
= bE L p(t),
p=0 k=1 ¢=0
(1.15)
and
My, ~
T, S(8) = D Fy Lns(®) (1.16)
p=0
Then, we get

(b =N aroft=ta SRV v N
/ e T e ( ) m(a()\,t),t)z/)(a()\,t),uMn(o:@\E;%)&%]Dnm(t). (1.17)

Vo
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It is evident from Eqs. (1.15)-(1.17) that

M,
o 2P+ 1
;L - 2 Z; u?wn (tn77’)Ln7p(tn7Z)wn,Z7
7=
2 +1 e
o = e 2 (tni = tue1) k(o0 i) b ) (o (100, i) iy, (0 (51, 10,0))
1,j=0
L p(tn ) sty 5, (1.18)

M,
2p + 1 n
k k
bpq g wk q tn )i tk . tn z)¢ (ti(p Upr, (tﬁq))Ln,p (tn,i)wn,ia

f]? = 5 Z f?/[n (t”’i)Ln,p(tn,i)wmi.
i=0

With Eqgs. (1.15)-(1.17), the equation (1.14) reads

M, My, My
Z deLn,p(t) = Z fngp(t) <X Z bZLn,p(t)

where
n—1 My
_ k
o Z Z bpq
k=1 q=0
Consequently, we compare the coefficients to obtain
pO_fn+Z~);L7 0<p< M,. (119)

To evaluate the unknown coefficients u; for any given n, we solve the nonlinear system (1.19) with

the Newton iteration method. Finally, the approximate solution can be obtained as
N M,
M) =03 ulLay(t). (1.20)

n=1 p=0

It is worth to notice that for the linear case of Eq. (1.1), the unknown coefficients 1, for any given
n can be obtained by the following linear system of equations

Au=b+c, (1.21)

where the entries of the matrix A = [ap,q]%:o are defined by

M,
2p+1 ~10 ~1,0 ~10
Ap,g = olta Z (tn,i - tn—l)a’{(a(tij atn,i)’ tn,i)Ln,q (U(tij atn,i))Ln,p(tn,i)wn,inl,j )
ij=0

and
. b=(g,... b)) e=(f . )

o
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2. Some results on the analysis of the method

An hp-version collocation method

Theorem 2.1. Let u" be the solution of Eq. (1.11) under the hypothesis of Theorem 1.1 and uly
be the solution of Eq. (1.14). According the assumptions of Theorem 1.1, the function (., u) fulfills
the Lipschitz condition with respect to the second variable, i.e.,

(. ur) =¥ u2)| < ylur —ugf, v =0. (2.1)
Then, for any 1 <n < N and m < My, + 1,
By = By + Bs,
with

n—1
IBill, <chnT2 717 (R (M + 1) 72" 024 (s, u(5)) I3, )
k=1 .

+ 7 (lexlly, + hi™ (M + 1)’2m\|3thI|52zk)> + chy™ (M + 1) 7270 f,,

where
B = Zig, (52" [ = N (B3 (5(o 0.0, (o0, (70, 0)

b,
— k(e 8, (N, 1), 4" ((A,1))))dA)
By = f(t) = Thy, £ (),

n—1
< ZI}‘MH<\/Q (t - S)ail(ﬁ(sat)w(svuk(s)) _Isl:Mk (R(S,t)l/](s,’u,f;c\/[k(b’))))d8>, (23)
k=1 k

andek:ukfuﬁ/[kforlgkgl\f.

Theorem 2.2. Assume that the Fréchet derivative of the operator Ku with respect to u is satisfied
at |(K'u)(t)| > 1 > 0, then under the hypothesis of the Theorem 2.1, for sufficiently small huyax the
following error estimate is obtained

n—1
n n Ca « a— m —2m m
lenl® = llu™ =y, 2 <55 expler®T) (T2 37 (W™ (My + 1) 924 (s, u(s)) 3,
k=1

PR M+ )0l ) + W M+ )7 (|07 R,
RN D, ) + B M )7 (Pl 0,
+ ||w<.,u<.>>||H;a,1,O(Qn>>).

(2.4)

Theorem 2.3. Assume that u(t) be the exact solution of Eq. (1.1) and u’\ () be the global approz-
imate solution obtained from Eq. (1.20). Under the hypothesis of Theorem 2.2, the following error
estimate can be derived for sufficiently small hymax as

lu = upy llo <7 exp(ey*T**) Aifas (Monin + 1) (T‘”(VIW?UHQ + 11054 (s, uls))ll2) + 0™ flla

+’Y||U|’Hma Lo@ T 1%, ())HH"; Lo@) F hiaxlU( w (-))|’H;ﬂa_170(9)>~

(2.5)
VoY
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Figure 1: Plots of the E(u}}) error in logarithmic scale for the h- and p-version collocation methods
with a = 0.3 for Example 2.4.

2.1. Numerical results

Example 2.4. Consider a test problem with singular solution

t

1

/ (t— s)o‘_1 exp(ts)uQ(s)ds = (2)_20‘t2+°‘F(3 + 20)T(e0) 1F1(3 4 2, 3 + 3a, t2), te[0,1],
0

where the function 1F; is called confluent hypergeometric function of the first kind. The exact
solution u(t) = t'T* belongs to HZ , 4([0,1]). In this example, different merits of the hp- method
are investigated. First and foremost, the superiority of the hp- version method against h- and p-
version method with @ = 0.3 is demonstrated by Figure 1 and 2. The hp-version method allows
us to adjust the parameters M and N to achieve the suitable solution. Figure 1 depicts h- and
p-version methods in which the values of parameters M and N are equal to 1, respectively. Figure 2
shows the hp-version collocation method for each fixed N =1,2,4,8 when h,, = h = % and various
values of M,, = M* forn=1,..., N.

Secondly, in order to compare the theoretical and the numerical solution, we consider hp-version
with M = 2 and various N. Therefore, it is expected to have a rate near 2; namely, py =~ m = 2.
This expectation is experimentally verified and shown in the left sub-figure of Figure 3.

Finally, we consider different values for a. According to Theorem 2.3, increasing the values of «
affirmatively affects on the convergence rate which is verified by the numerical results on the right
sub-figure of Figure 3.

Figure 2: Plots of the E(u}}) error in logarithmic scale for the hp-version collocation method with
a = 0.3 for Example 2.4.
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An hp-version collocation method
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Figure 3: Plots of the Fy(u})}) error in logarithmic scale: a) Comparison between theoretical and
numerical results b) The results of hp-method for Example 2.4 for various a.
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A numerical method based on Daubechies wavelet to solve
a class of FDEs

Nasim Madah Shariati

Abstract. Solving Fractional Differential Equations(FDESs) is an important matter in various fields
of sciences. In this paper, by using an extension of Block Pulse functions named quasi Block Pulse
functions, fractional integration operational matrix of scaling functions of the Daubechies wavelet
is introduced and through that a class of FDEs is solved numerically and acceptable results are
obtained.

1. Introduction

Fractional Differential Equations (FDES) have a significant role in numerous fields of sciences. Some
numerical methods have been used for solving FDEs such as Spectral Method [1], and wavelet [2]. In
1988 Ingrid Daubechies made an orthonormal basis from smooth wavelet with vanishing moments
of order N and compactly support for scaling function which is [0,2N — 1]. In this paper, we define
quasi Block Pulse functions and by helping them, we introduce fractional integration operational
matrix for scaling function of the Daubechies wavelet and through that we solve a class of FDEs.

Let ¢ as the scaling function of the Daubechies wavelet. Assume that, we use vanishing moments
of order N. If f € V; of multiresolution analysis and ¢ € [a, b] that a,b € Z, in this case the function
f(t) € L*(R) can be approximated by

29b—1
Pif(t) = Z cjk®ik(t), a<t<b,

k=2 a+2—2N

such that {¢; := 27/2¢(27t — k)} forms a base for subspace V; of multiresolution analysis and [3]
2N-1
Cjk 2/ f(&)@jn(t)dt.
0

2. Quasi Block Pulse Functions

These functions are similar to Block Pulse functions, with the difference that grid points are arbi-
trarily selected that are not necessarily equidistant.

Keywords: Fractional differential equation, Scaling function, Daubechies wavelet, Quasi Block Pulse functions,
Fractional integration operational matrix.

AMS Mathematical Subject Classification [2010]: 33F05, 34A08, 34A45.
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Definition 2.1. For m € N we define an m element partition of quasi Block Pulse functions on

[0,T):
iy 1, <t <t
bilt) = { 0, otherwise, (21)

A numerical method based on Daubechies wavelet to solve FDEs

where i =1,...,m,and 0 =t <to < - <ty <tpmy1 =71T.

The disjointness and orthogonality properties are hold for the functions {bi}zl defined in (2.1).
In order to approximate functions, we use truncated series of QBP functions with m terms in the
following way:

F(t) =) fibit) = FT B (t) = Bu(t)"F, (2.2)
i=1
where F' = [f1, fa...., fm]T and At = t;11 — t;, we have f; = ﬁ fOT F(t)bi(t)dt.

2.1. Fractional Integration Operational Matrix for the QBP Functions
We can write the Riemann-Liouville integral operator of order a > 0 in the following form

o f(t) = F(la)tal ff(B), 0<t<T, (2.3)

notation * means the convolution product. From (2.2), we have
1

110 = gt )~ FTF(la){to‘_l “Bo(1)}.

Taking the Laplace transform and then taking inverse Laplace transform results in

I 1
—— [ (t—7)*bi(7)d :7{15—15-0‘ t—ti) — (t — tiy1)u(t — t; } 2.4
o = = s {0 — ) — ) ue =t} @24
here u(t) is the unit step function. From definition of the QBP functions, for j = 1,...,m, we can
write
m
(t - tj)a’u,(t — tj) = Z d@jbi(t) = [0, oo ,0, djyj, dj+17j, v ,de]Bm(t),
i=1
where

1 tip1—t; Firq —ts o+l t:— ¢ a+1
/ tau(t)dtz(’“ 3) 7)) . di=1,...,m.

dij =
N ft; Ait(a+ 1)

So from (2.4) we can write

1 /t _1
— t— 1) bi(T)dT =
1
NCE] [0, 0,...,0,di,div1,i — div1,i+1,div2i — dig2,it1s- - dmyi — dm,i—l—l]Bm(t)a

and finally we conclude

I°B,,(t) = r(la)/o (t —\Ofv)a—le(T)dT =F,B,.(1), (2.5)
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where
[d1 52,1_— dao 6?3,1 - 6?3,2 e sz,1 - sz,2_
. da o dzg2 —dzsz ... dm2—dm3
F,=— d3 3 oo A3 —dmal
I'a+2) . .
- 0 C?77/-'/777/-'/ -
and
5 (e =)™ = (- )
dij = :

tiv1 — t;
3. Operational Matrix of the Scaling function of the Daubechies Wavelet

Consider vector of the scaling functions for the Duabechies wavelet
T
qu(t) = [¢j7k1 (t)v ¢j,k1+1(t), R v¢j,k2 (t)] )

where ko — k1 = m — 1. Grid points are in the form of T = {tz|7, =1,.. .,m}, and let matrix of

the scaling functions of the Daubechies wavelet by

P, = [¢m(t1)a ¢m(t2)7 EERE) ¢m(tm)]

In grid points, we have
Om(t) = @B (1), (3.1)
and hence

B, () = ((I)T,L)—lgbm(t). (3.2)

3.1. Fractional Integration Operational Matrix for the Scaling Functions of the Daubechies
Wavelet

Assume that fractional integration operational matrix for the scaling functions of the Daubechies
wavelet has the following form

1%6m(t) = P o (t). (3.3)
In the grid points, from (2.5), (3.1), and (3.2), we can write

I (t) = I°®,Bi(t) = @I B (t) = @ FaBin(t) = @0 Fa(®m)  dm(t).

So, we have

P, =&,F, <¢m> _1. (3.4)

4. Numerical Method

In this section, we declare a numerical method based on the scaling functions of the Daubechies
wavelet of order 2 named Daubechies Wavelet Method(DWM) to solve the FDEs in the form of

oDYy(t) + f(t,y\(t?\) =0, a<t<T. (4.1)
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The notation D points to Caputo fractional derivative and a € Q. The initial conditions are

A numerical method based on Daubechies wavelet to solve FDEs

y®0)=0, k=0,1,...,[a] -1, (4.2)

and we let ¢ =0 and T' = 1. First, we let

ko

Doy(t) = Y cjrdin(t) = CTom(t), (4.3)

k=k1

where ki = 2 — 2N, ky = 29 — 2, and coefficients ¢jk’s should be determined. Then, by using the
Riemann-Liouville integral operator of order o and imposing initial conditions, we get

y(t) = CTIa¢m(t) = CTPoc(bm(t)' (4'4)

By substituting (4.3), (4.4) in Eq. (4.1) and using (3.1) and (3.4), and considering dyadic points
in interval [0,1) as grid points, we get a linear or nonlinear system with c;;’s as unknowns. By
solving this system and then using (4.4) the numerical solution is obtained.

5. Main results

Example 5.1. First, we solve the linear FDE

1 3 24
D% (t t) = t4 _ *753 o t3—oz t4—a
y() + () 2" TTd—a) TTh-a

0<a<l, (5.1)
whit initial conditions y(0) = 0, and @ = 1/4. The exact solution of Eq. (5.1) is [2]: y(t) = t* — 33
Results are indicated in Table 1.

Table 1: Maximum of absolute error in different resolutions, Example 5.1.
lej(Wlle j=3  j=4 j=5 j=6
[2] 0.0045 0.0018 0.0007 0.0002
DWM  0.0028 9.4756e-04 2.7797e-04 7.6733e-05

Example 5.2. Now, we solve the nonlinear FDE

tOlJrl 2
DoY) + 2(t) = t C———ﬁ, 0<a<?2, 5.2
v+ 0 =+ (fgg)  0<a< (5.2
ta+1
whit initial conditions y(0) = y/(0) = 0. The exact solution of Eq. (5.2) is [1]: y(t) = Tat2) We

solve for o« = 1.5. Results are indicated in Table 2.

Table 2: Maximum of absolute error in different resolutions, Example 5.2.
lejllc  5=3 j=4 j=5 j=6
DWM  3.8802e-03 1.0023e-03 2.5399e-04 6.3883e-05

Voq
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Modified Ostrowski method for solving nonlinear equations
and its dynamic

Vali Torkashvand, Manochehr Kazemi, Elham Hashemizadeh

Abstract. We have constructed a family of fourth-order methods which use three evaluations of
f(xg), f(wg), and f(yr). They have an efficiency index equal to 45 = 1.5874 and are optimal in
the sense of Kung and Traub’s conjecture. Moreover, the dynamics of the proposed methods are
displayed with some comparisons to other existing methods. Numerical comparison with existing
optimal methods implies that the new class supplies a practical alternative for solving nonlinear
equations.

1. Introduction

Most of the Mathematical problems that arise in science and engineering are very hard and sometime
impossible to solve exactly. Therefore, it is indispensable to calculate approximate solutions based
on numerical methods. The celebrated Newton’s method which can be defined as xpy1 = xp —

f,((fc’;)),is one of the oldest and the most applicable methods in the literature. This method has

locally quadratically convergence for the simple roots and per iteration requires one evaluation of
the function and its first derivative. Hence, many researchers have focused on constructing methods
that do not require functional derivative evaluation (Steffensen-like methods) and have a higher
degree of convergence than Newton’s method. Ostrowski introduces the first optimal two-point
method [5]. His method has a better efficiency index than Newton’s method as follows.

B f(zw) f(yx) -y
T4l = Yk — f/(x'b 2f(yk)ff(:rk)'

{yk:xk_ ff/((g;;))a k:071727"'7

But these metods have a major weakness, one has to calculate the derivative of f(z) at each
approximation. A family of Steffensen like methods was derived in [2,7,8,10] free from derivatives.

In this work, we turn Ostrowski’s method into a Steffensen-like and solve the problem of com-
puting the derivative function by the divided difference. The construction of the proposed class is
based on the weight function approach.

The rest of the paper is organized as follows: We describe the structure of the without memory
methods in Section 2. The numerical study presented in Section 3 confirms the theoretical results.
We compare the basin of attraction of the proposed method with several existing methods in Section
4. Finally, we give the concluding remarks.

Keywords: Nonlinear equations. Without memory methods. Order of convergence. Basin of attraction .
AMS Mathematical Subject Classification [2010]: 65HO05.
BB
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2. The Method and Its Convergence

To derive new methods, we approximate f’(x,) given in one-step (1.1) as follows:

wi = i B1 ), £ o) ~ Sl ] = L= (2.1

In following, the derivative f’(z,) in the second step will be approximated by

f[yk7 'LUk]

W) 22)

I (k)

f (k)
from the scheme (1.1), the approximations (2.1), (2.2) and state the following two-point method

where h(ty) is a differentiable function that depends real variable ¢;, = . Therefore, we start

2.3)
_ ) Flue) (
Th1 = yp — H(t) f(ﬂfk)_;f(yk) f[ykvlzuk].

{wk:$k+ﬁf(xk)ayk:$k_ f[J;Efo)k]’ k:071727a

Theorem 2.1. Let H, f : D C R — R be sufficiently differentiable functions and have a single
root x* € D, for an open interval D. If the initial point xo is sufficiently close to x*, then the
sequence Xy, generated by any method of the family (2.3) converges to x*. If H is any function with
H(0)=1, H(0) = —1, |H"(0)| < 00 and 8 # 0 then the methods defined by (2.3) have convergence
order at least 4.

Proof. By using Taylor’s expansion of f(z) about z* and taking into account that f(z*) = 0, we
obtain

f(x) = f'(z*)(ex + caei + csei + caeq + O(e})). (2.4)
Then, computing e, = wy — *, we attain wy, = x5, + S f(z)
ekw = ek + erBf (") (1 + ex(ca + ex(cs + exca))) + O(e}), (2.5)

and
yr =2* + (L+ Bf (&)ef + (—(2+ Bf (22 + B (%)) + (L + B (x)(2 + B (z*))

csep + (4 + B (@) 5+ Bf (2*) 3+ Bf (2%))))es — (T+ Bf (x*)(10 + Bf' (z*)
(T+28f'(x*))))ezcs + (L+ Bf (@*) B+ Bf (a*) (3 + Bf'(¥)))ea)er + O(e}). (2.6)

Using the Taylor expansion H (ty), we have

(f(gk))Z
H(t) = HORUS) = H(O) + B0 + 1076 (2.7
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Thus, we get

V. Torkashvand, M. Kazemi, E. Hashemizadeh

f(zk) f(yk)
F(@r) = 2f(yk) flyr, w]
= —(=1+h0)(1 + Bf (x*))coes 4 (=2 + h0 — h1(1 + Bf' (x*))* — Bf'(x¥)
(24 B (z))c3 — (=1 + h0)(1+ Bf'(x*))(2 + B (z*))cs)ed (Bf («*))?
- (%(8 — 2h0 + 8h1 — h2 + f'(z*)(10 + 6h0 4 14h1 — 10h2)(6 + 8h1 — 3h2)
(—=Bf (2*)3(=2 + 2h0 — 2h1 + h2)c3 — (7 — hO + 4h1 + 2B/ (z*)
(54 h0 + 5h1) + (Bf (z*)2(7 + 2h0 + 8h1) 4+ 2(Bf (z*))3(1 + hl)cacs
— (=14 h0)(1+ Bf' (") (3 + Bf' (&) (3 + B (z7))))ca)ey + O(e3). (2.8)

Tpy1 — " =y, — " — H(ty)

By putting h0 = 1, h1 = —1, the final error expression is given by:
ekl = _71((1 +Bf(a%))?e2) (=2 + h2 + f'(¢*)B(2 + h2)c] + 2¢3))e, + O(e}), (2.9)
which finishes the proof of the theorem. O
Some other simple forms of functions H can be:

{Hl(t) = 1—t, Hy(t) = 15, Hs(t) = (1 = £)%, Ha(t) = e, (2.10)

Hs(t) = %, Hg(t) = cos(t) —sin(t), Hy(t) = Arccos(t), Hg(t) = tlzj:tl

3. Numerical results

The principal purpose of numerical examples is to verify the validity of the theoretical developments
through a variety of test examples by use of Mathematica program. Numerical computations have
been carried out using variable precision arithmetic in Mathematica 11 with 10000 significant digits.
The computational order of convergence r. [6] computed by the expressions

gl f(m)/f(ma)|
*~ og | f(wn_1)/Flan—)]

We compared proposed method (for 5y = 0.01), Kung-Traub’method (KTM) [3] and Ostrwoski’s
method (OM) [5]. The numerical values in Table 1 validate that the presented scheme TM4 performs
better, not only for the absolute error in the root and the absolute value of the function as compared
to without memory method. It should note that the condition for the convergence of repetitive
methods is to select the appropriate initial conjecture root of the nonlinear equation. One can see
more about this in reference [9].

(3.1)

~
—_
&
I
T
+
&
=
+
W
&
[N
|
—
\‘Cﬂ
Q
%
=
w
=
8
(=)
I
=
=

VY



50

Univerity of Guilan

Modified Ostrowski method

Table 1: Comparison of various iterative methods.

functions TM4, Hy(t) | TM4, Ha(t) | TM4, Hy() | TM4, Hy(t) | TM4, Hs(t) | OM [5] KTM [3]
Fi,70 = 1.1 | |2er1 — zx] | 3.87e-1378 | 2.10e-1418 | 2.226-1343 | 6.90e-1301 | 9.51e-1379 | 7.39e-35 | 5.39e-31
If(zps1)] | 1.24e-5509 | 2.14e-5669 | 5.66e-5370 | 1.17e-5199 | 2.76e-5510 | 1.01e-135 | 5.40e-120
Tter 3 4 3 3 3 3 4
Te 4.00 4.00 4.00 4.00 4.00 4.00 4.00
Torto =1 | |zhs1 — x| | 8.79¢-1385 | 1.43¢-1338 | 2.100-1233 | 3.26c-1241 | 3.48¢-1371 | 2.156-34 | 3.36¢-38
|f(zps1)| | 9.20e-5537 | 6.50e-5352 | 1.51e-4931 | 1.02e-4965 | 1.129e-5481 | 5.78¢-135 | 4.37e-64
Tter 3 4 3 3 3 3 4
Te 4.00 4.00 4.00 4.00 4.00 4.00 4.00
Foto =1 | |zns1 — zx] | 5.69e-1327 | 7.00e-1346 | 1.87e-1327 | 1.21e-1320 | 2.37e-1305 | 2.156-34 | 7.32e-28
If(zpe1)| | 2.27e-5305 | 1.20e-5382 | 2.00e-5307 | 2.30e-5316 | 1.42e-5218 | 5.78¢-135 | 1.33e-108
Tter 3 4 3 3 3 3 4
Te 4.00 4.00 4.00 4.00 4.00 4.00 4.00
T, 00 = 1.5 | |2ns1 — zx] | 1.69e-1336 | 6.71e-1315 | 2.04e-1342 | 5.31e-1361 | 2.60e-1276 | 7.39¢-35 | 1.24e-35
If(zps1)| | 3.92e-5342 | 9.36e-5256 | 8.27e-5366 | 3.73e-5440 | 2.22e-510 | 11.01e-135 | 5.11e-124
Iter 3 4 3 3 3 3 4
Te 4.00 4.00 4.00 4.00 4.00 4.00 4.00
4. Basins of attraction of fourth-order derivative-free methods

In this section, to analyze the dynamic behavior of the proposed method, selecting the appropriate
value of the parameter 8 and selecting the weight function with the maximum absorption region
of a polynomial have been used. From the dynamic point of view, we take a 500 x 500 grid of the
square D = [—5,5] x [-5,5] € C. We have studied the dynamic behavior of the proposed methods
by using the function f(z) = 23 — 1. Various researchers have used basins of attraction to compare
iteration schemes, for example, [1,4].

We analog the attraction basin of the proposed method with two-step methods in Figure (1).
Figure (1q) is Kung-Traub’s method, which does not use the function-derivative where (1r) is the
method with the proposed Kung-Traub derivative. According to the Figures, one has concluded
that the basins of attraction of the proposed method are the best method because it has a vast and
lighter basin of the attraction than all other mentioned methods (H;(¢)). Here the value of the free
parameter S = 0.001 is considered.

5. Conclusion

In this paper, we used the idea of the weight function and turned Ostrowski’s method into an optimal
order method. The proposed methods are without-memory derivative-free. Numerical tests intend
to verify the better performance of the proposed method over the others. According to the examples
studied in Figures, we conclude that the weight function H;(¢) and parameter S = 0.001 have the
highest stability region and are competitive on other methods.

Further researches must be done to develop the proposed methods for system of nonlinear

equations. These could be done in the next studies.
VYV Y
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Figure 1: Basins of attraction for f(z) = 2% — 1 for various methods
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On the variable parameter Uzawa method for double saddle
point systems

Mohammad Mahdi Izadkhah

Abstract. In this paper, we present variable parameter Uzawa method for solving double saddle
point systems. We find the variable parameters of the proposed method, in a way that minimize
some vector norms induced by symmetric positive definite matrices. Some numerical results are
given to demonstrate the efficiency of the presented method.

1. Introduction

In this work, we consider the following large and sparse system of linear equations

A BT CT X bl
Au=|B 0 0 yl=1[b2] =b, (1.1)
C 0 0 z bg

where A € R"*" is a symmetric positive definite(SPD) matrix, B € R"™*" and C € RP*"™ have full
row ranks, z,b; € R", y,bo € R™ and z,b3 € RP. This is a class of double saddle point problems.
The notation Ran(A) stands for the range of A. For given vectors x,y and z of dimension n,m
and p, respectively, u = (x;y; z) will denote a column vector of dimension n + m + p. we use (-, -)
for usual inner product of two vectors. For a symmetric positive definite matrix G, we consider
|z|la = HG%IEHQ for an arbitrary vector z, where ||v||2 = \/(v,v) is Euclidean vector 2-norm. Linear
systems of the form (1.1) arise from mixed finite element approximation of the potential fluid
flow problems; see [1,2] and the references therein for detailed descriptions of these problems. The
following Proposition given in [1] represents the necessary and sufficient condition of the invertibility
of the coefficient matrix A in (1.1).

Proposition 1.1. Let A be a SPD matriz and assume that B and C have full column ranks.
Then a necessary and sufficient condition for the invertibility of the matriz A in (1.1) is that
Ran(BT) nRan(CT) = {0}.

2. Variable parameter Uzawa method

Uzawa’s method has long been a popular technique for solving saddle point problems. We study
possible extension of Uzawa’s method to the double saddle point problem (1.1). To this end, we
first split the coefficient matrix A as follows

A 0 0 A —BT _cCT
A=M-N, M=|B —-aQ 0 , N=[10 —aQ 0 , (2.1)
C 0 —BM 0 0 —BN

Keywords: Uzawa method, SOR iterative method, saddle point problem.
AMS Mathematical Subject Classification [2010]: 65F08,65F10, 65F50.
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in which the parameters a > 0 and 5 > 0 and the matrices () and M = N are given and be positive
definite. So, based on the splitting (2.1) the exact solution u* = (z*; y*; 2*) satisfies

On the variable parameter Uzawa method for double saddle point systems

¥ = A7 (b — BTy* — 0T2%), (2.2)
v =y +aQ ! (Br* —by), (2:3)
2* =2+ BMH(Cx* — b3). (2.4)
By applying the first-order Richardson iterative method to the three linear equations (2.2)-(2.4), it

follows
2D — 471, — BTy®) — T ,0)y,
YD = (0 4 Q=1 (B ), (2.5)
B — 0 o gL (Cr D — py).
We find the optimum parameters « and 3 such that the norms
[0@ 9" — gWlg = 0@ 2g® — Q29 , [|8M 0¥ —h®|las = (|83 2h® — M2hO

are minimized, respectively. Here ¢i*) = Ba*t1 — by and h®) = CzFt1 — bs. A direct calculation
gives

(Q g™, gk

“T T (g™, g®)
. (Mflh(k%h(k))
p= (hF), h(R))

We are now ready to formulate the variable parameter Uzawa(VPU) method by (2.5) and motivated
from [4] for the double saddle point problem (1.1).

Algorithm 1. (Variable parameter Uzawa method)

Given (¥ € R”, y(© € R™ and 2(9 € RP, the sequence u®) = (z(k); y*); 2(¥) is defined for
k=1,2,... as follows:

1. Set z(*+1) = A1 (b — BTy) — CTZ(k)).

2. Compute g(k) = Bkt — by and d) = Q! g ). Then, compute the relaxation parameter
ap =< (g®,g™)’ g9 #0,
1, g®) =0.

3. Compute h*¥) = Cz*+1 — by and s*) = M~1h(*) . Then, compute the relaxation parameter

s(8) (k)
5k — gh(k),h(k)i’ h(k) 7& O’
1, hk) = 0.

Set z(k+1) = 2(k) 1 3, 5(k)

Remark 2.1. To further improvement of the computing efficiency of the VPU method, we can employ
the Cholesky decomposition to solve the systems of linear equations with coefficient matrices A4, @
and M, directly. For iterative scheme, one can use conjugate gradient method to some prescribed

accuracy at each step.
ARTAS
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3. Numerical experiments

M.M. Izadkhah

We now describe some numerical experiments were carried out in order to show the efficiency and
accuracy of the presented method. The computational study was done in the next problems.

Example 3.1. Let us consider the double saddle point system (1.1), where the entries of the
matrices A € R"*"™ B € R™*" and C € RP*"™ are defined as follows

41 =g . :

1+ 1, 'Z.J i, j=n—m-+1
A=(aij) =1 1, i—jl=1, B=(by)= 0, otherwise

0, otherwise. 7 .

and . o
()= d b t=1J
¢ =(a)) { 0, otherwise.

For this problem, the condition of Proposition 1.1 is satisfied. First, we set Q = BA~'BT and
M = CA'CT, then we used Algorithm 1. to solve (1.1). The vector b is chosen so that the

components of the exact solution u of (1.1) have values equal to 1. All runs are started with the

s . ) . . . (k) .
initial zero vector and terminated if the current iterations satisfy ERR = HI;(O)HE < 1074, or if the

prescribed iteration number k. = 2000 is exceeded. Here, we define r%) as

by A BT ¢T\ [z
r® = (b -|B 0 0 y (k)
b3 C 0 0 2(k)

We compare the performance of our method with the SOR-like method [3] by reporting the number
of iterations(minlT), the CPU time and the relative residual norm(ERR) in Talbe 1. we choose
w = 1.2538 in the SOR-like method.

Table 1: CPU time, iteration number and EER
VPU method SOR-like method

’ n ‘ m ‘ P ‘ minIT ‘ CPU(s) ‘ ERR ‘ w ‘ minIT ‘ CPU(s) ‘ ERR ‘
50 | 30 | 10 79 0.0042 | 9.891e-05 | 1.2538 285 0.0625 | 9.996e-05
80 40 | 20 86 0.0054 | 9.766e-05 | 1.2538 429 0.2188 | 9.978e-05
100 | 50 | 40 183 0.0138 | 9.601e-05 | 1.2538 530 0.3281 | 9.914e-05
300 | 150 | 80 359 0.1195 | 9.920e-05 | 1.2538 1573 4.4688 | 9.983e-05

From the results reported in Table 1, we can conclude that minIT and computational CPU
time are important items to demonstrate the efficiency of the VPU method in comparison with the
SOR-like method [3].
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Abstract. In this work, we study the error analysis of an efficient numerical method based on the
finite difference approximation in time and the finite element method in spatial for a distributed-
order time Schrodinger equation (DOT-SE). Firstly, the given problem is transformed into couple
system of distributed-order fractional differential equations. Then, the fully discrete is formulated
by using finite difference and finite element approximations. Moreover, unconditionally stability of
this discrete scheme is proved.

1. Introduction

In this article, we study the error analysis of a distributed-order time fractional Schrédinger equation

as follows {

iDY ), 1) + 5%¢(x, t) — v(z, )y (z,t) — 2(z,t) = 0, (1.1)
with the initial condition ¢ (z,0) = f, = € [=[,l] and boundary condition ¥ (—I,t) = ¥(l,t) =
0, t € [0,7). Also, the parameter ¢ is real constant, D, (@) denotes the distributed-order frac-
tional derivative, w(«) satisfy 0 < folw(oz) < oo and v(x,t) is general potential. In recent years,
time-fractional Schrédinger equation has been used to describe many physical phenomena . Re-
cently, many efforts have been made to develop effective numerical methods for solving fractional
Schrodinger equation. The main goal of this paper is to study error analysis of FE-L1 method for
DOT-SE. To do this, equation (1.1) can be written as the following coupled system:

Dy (a,t) — 6 Lbp(x,t) + v(w, )r(x,t) + 2r(z,t) = 0,
DY pp(,t) + 85y (x,1) — v(w, v (2,1) — 21(2,t) = 0.

2. Numerical approximation

We first recall some definitions and lemmas which are needed in the numerical analysis.

Lemma 2.1. Let 0 < a < 1, define the nodes o, = ﬁa7 Ay = Mo, m = 0,1,2,..., M, in the
interval [0, 1] where ag = 0 < a1 < ... < apy, and s(a) € C(Q), then we have

1 Ma
| st@da =00 3 Austan) - Z6. <)
m=0

where A, = % form =0 or My and A,, = 1 for otherwise.

Keywords: Schrédinger equation, distributed-order fractional equation, finite difference, L1-method, finite element .
AMS Mathematical Subject Classification [2010]: 13F55, 05E40, 05C65.
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Lemma 2.2. Lett, =nt,n=0,1,2,....,.N, and T = N7, we discretize the Caputo derivative by a
difference approach as follows

The error analysis of an efficient numerical method

1 fn . 1 -

Cra —a n 1 2

DY (t,) = £y — ds = ——— N Vdpp(ta_;) + R: + R2,

SR (t) = g [ (b= o) s ey )

where b7 = (j + D= — 1= and dpp(tn—j) = Y(tn—j) — ¥(tn—j-1), j = 0,1,2,...,n — 1. The
truncated errors RL, R? satisfy R2 = O(7%) and |RL| < C12~¢ max\a Tgt;ﬁ ) |.

The corresponding weak formulation couple system is to seek {¢r,v¥r} € H& X H& for any
(¢r1,0r) € H} x H}, satisfying the following relation

(D pr (), or) + 8(2570, 558) + vlw, 1) (Y. 1), or) + (zr(2, 1), o) =0,
(D, ), pr) — 6( 2Lt 001y (1) (i (2, ), 1) — (21(m, ), 1) = 0,

where the bilinear form B(-,-) is defined by B(v, ¢) = (5((%, aI) +v(x,t) (¢, ¢). Now, we define the
FE space X, C H} by X, = {¢n € Hi NC°(Q)|¢nle, € Pr(en),en € U}, where Qp, = {eplen € Tp}
and T}, is a family of subdivisions Q = [0, 1]. Based on the given FE space X}, the corresponding FE
semi-discrete scheme is to find {¢7 4, ¥ p} € Xp x X}, such that, for any (74, orn) € Xp X Xp,
we have

{(Df(a)%,h)’ ¢rn) + BWg ern) + (2r(T,t0), 9rE) =0, Yopn € X, (2.1)

(D:J(a)wgh)a ‘Pl,h) - B(%,h, SDI,h) - (Z](x,tn), (Pl,h> =0, v‘PI,h € Xp.
To give the fully discrete analysis based on the spatial semi-discrete system, we need to approximate
both distributed-order and fractional derivative in time.

Using Lemma 2.1 and Lemma 2.2, we can consider L1 type discretization for distributed-order
fractional derivative at t = t,,, as follows

(Tar(z(f o] 22j=0 S Mo Apw (e By’ oM+ B4k psPrp) + (2R(2, ), PRR)
=R 4 LlRa Yorn € X,

(TQF‘Z‘{‘ ) Z] o o Ma mw(am)b?dt@/);fgjhja @rn) — B, e1n) — (2r(z,tn), o1n)
— R 4 LlR“, Yorn € X

(2.2)

2.1. Stability and error analysis
Theorem 2.3. The fully discrete variational formulation (2.2) is unconditionally stable.

Proof. To show the unconditionally stability of system (2.2), we have to prove the following relation

1
+ ;(IIZ%IP +1#511%)- (2.3)

k k
||1/11,hH2 + WR,h”2 <

Setting {@rp @rn} = {@b?}h,@b’éh} X = Z%‘* A (am)m in system (2.2) and since
) gm0 " = ey (bov™ = 35 (b = bj—1)$" ™ — bu—19?), using the Cauchy-
Schwartz inequality this system can be written as
X7 RI% + B s 07 5) < IZRIIEAI -+ X 357 Bj—1 = b7, 197,
Fxbn-1 197 p 117 _ (2.4)
X 1P = BT 0 ) < I2f IR all + X 3251 Gj—1 = 0) [ 119 1 '
+an\—Y1VH¢9%,hH”w1%,hH'
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Due to B(@Z)I’%L’h, @D}"h) = —B(@b}‘,h, W;%,h) and B(v, ¢) > 0 and with summing the both sides of system
(2.4), we get

n—1
XU + 193 al7) <x D bj—1 = b)) (073" I Eall + 95 1145411

j=1
+ xbn1 (VT A 1Tl + 1R Rl R L)
+ lz&l197 o ll + 127 1Rl
The Holder’s inequality, implies that

n—1
1

XA + IR 2 <D bg—1 = b) (175712 + Il 1)

7j=1
1
+ X0 1 ([T A7 + [0k 4l1%)2
1
+ (2RI + 1271%)2.
By using above inequality, we show that our claim (2.3) is valid. To do this the method of mathe-
matical induction will be used. For n = 1, using (2.6), results in

N)

1
107 ll* + Ikl < 197 A1% + 1R al* + ;(Hz}aHz +1=11%). (2.5)

which is true. Suppose that the relation (2.4) is true for n = k — 1. Using this hypothesis for n = k,
one obtains

k—1
95 ll? + IR AlP < (D51 = bi) + beet) (IL4l% + 10%41%) + X(IIZ%HQH!Z}“IIZ),
7j=1
since
n n—1
> i1 =bj) by =1=b)+ > (bj1—b;) +bp1 =1, (2.6)
j=1 j=2

we get the following inequality, which is consistent with our claim
1
k k k k
L [ R [ [ 9 ;(||ZR||2 +I=71).

Therefore, the proof is completed. O

In the following theorem, an error bound for the time discritization of system (2.1) is presented.

Theorem 2.4. Suppose that 1y, g, are the exact solutions of system (2.1). Then, its time
discritization satisfies the following relation

1 (tn) — 21 + [0R(E) — W] < IRY + PIRG|| + | RS + 'R

Proof. Since 17, 1 are the exact solutions of system (2.1) by subtracting this system with its
related time semi-discrete from, also setting

Q’ész( n) = Yk 0 = Y1(tn) — U7,
Oa n _
X = Z Apw( am)w,w = OR)¥PR = 0r

m=0
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and using the Cauchy-schwarz inequality, one obtains

Xlle7 1% + B(gh, 07) < IR + LR (lle7 ]| + x X201 (bj—1 — b)) [} Il fl
+xbn-1 317,

Xllopl? = Bop. o) < IRE™ + P Ry lopll + x S0 (bj—1 — b)llek I ghl
+xbn—1ll o}l ol

Doing the some process in the proof of theorem 2.3, results in
o (tn) = wFl+ lbr(ta) = whl < |RF + MR + |1 RE® + 2R,

and the proof is completed. O
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A robust spectral scheme for non-linear dynamical model of
COVID-19 disease

Amin Faghih, Payam Mokhtary

Abstract. In this paper, a high-order Galerkin approach based on the fractional Jacobi orthogonal
functions is implemented for the numerical solution of a non-linear fractional dynamical system,
in our case, modeling the recent pandemic due to corona virus (COVID-19). At the end, we have
given a numerical approximation to illustrate the validity of the method.

1. Introduction

Due to the corona virus and related death toll, many studies have been recorded on mathematical
modeling of outbreak of COVID-19 [2]. In [2], authors considered the following model of four
compartment including healthy or susceptible population z1(t), the exposed class z(t), the infected
population z3(¢) and the removed class z4(¢) (death due to corona or natural) at time ¢ (day) as

Dizi(t) = a— Kz(t)z1(8)(1 + azs(t)) — doz (1),

Diza(t) = Kz3(t)z1(8) (1 + az3(t) — (do + R)z2(t),

Dlz3(t) = b+ az(t) — (B 4 do + 6)23(t), (1.1)
DgZ4(t) = S ( ) d0Z4( )

5(0) =2, j=1,234 tex=[0T]

where K = Rodo(dﬁk)(ﬁ +dot9) g proportionality constant. The details of the parameters written

in the model (1.1) and their values are given in Table 1. Here v = 3 € (0,1) is a positive rational
number described by the co-prime integers n > 1 and A > 2, and T' i 1s a finite positive real number.
D/, is known as Caputo fractional derivative of order ~ [1].

In this paper, we intend to provide a highly accurate fractional Jacobi Galerkin method for
solving the non-linear fractional dynamical system (1.1).

2. Fractional Jacobi Galerkin method

The fractional Jacobi functions J4* VT)( t) with p,v > —1, 7 € (0,1] and ¢ € x are defined from the
Jacobi polynomials T )(x) through the coordinate transform z = 2(4)” — 1 as follows [3]

5 = a0 (26

T)T - 1> = Span{1,¢",...,t""}.

Keywords: Mathematical model of COVID-19, Non-linear fractional dynamical system, Fractional Jacobi functions,
Galerkin method.
AMS Mathematical Subject Classification [2010]: 34A09, 65L05, 65L20.
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These functions are mutually orthogonal concerning the weight function w7 (t) = t7v+7=1(T7 —

tT)*. Further properties of fractional Jacobi functions can be found [3]. We set 7 = % and for

7 =1,2,3,4 consider the fractional Jacobi Galerkin solution as

A spectral scheme for model of COVID-19 disease

ZjJV(t) = Z ijiJi(MV’T) (t) = le = QjJIt, Qj = [1)j70, Vjly--+5VUjN, 0, .. .], (2.1)
=0
where
I= [0 @, 5@, T ),

is the vector of fractional Jacobi functions, J is an infinite lower-triangular matrix and T, =
[1,¢7, ...tV .

Now, we give the following lemma which transforms z; y(t)z3 n(t) and zlyN(t)zg’ N (1) into a
suitable matrix form.

Lemma 2.1. The following relations hold
21,NZ3,N = V1 JM3T,, Z1,NZ§,N = v JMT,, (2.2)

where Mz and M5 are the following infinite upper-triangular matrices

v3do w31 wsJa ... v3(JM3)o v3(JM3)1 v3(JMs3)a
0 Q3J0 Q3J1 1 0 Qg(JMg)o yg(JM3)1
Ms=| 0 0 wdy ...|0 Ms= 0 0 vs(JMs)y ... |-

where Js, and (JM3s)s, s =0,1,... denotes the s-th column of the matriz J and JMs, respectively.

Since we intend to take the approach of solving the equivalence system of Volterra integral
equations of (1.1), Computing /7T, is required. Therefore, employing the relations (2.1), (2.2) and
some simple manipulations yield

v, JT; = —Kv, JM3AT, — Kéw, JM5AL, — dov, JAT, + f T,
VT, = Kvy JM3AT, + Kév JMZAT, — (do + R)uy JAT, + iQIp
v3JTy = Gy JAT, — (8 + do + 0)vg JAT, + f, T,

v JT, = dvs JAT, — dovy JAT, +i4It.

Here ij =[fj0,---» fin,---], j=1,2,3,4 and A are as follows

1
0 T(v+1) 0
A= 0 &b oo |, f =1a0,..]4+["0,..],

L'(y+7+1) J

fy=10,00000 fo=10,0, 0A+ 0,0, £, =10,

It is noticed that I7 is the Riemann-Liouville fractional integral operator of order ~ [1]. Now,

Projecting (2.3) onto <J(§M’V’T)(t),...,J](\;L’V’T)(t)?and defining v, = viJ = [00,V515---,05 n], We
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arrive at the following system of 4(N + 1) non-linear algebraic equations

v, = —Ky MYAN — Koy M5™ AN — dgp AN + [V,

v, = Ku MY AN + Kap M5 AN — (do + &), AN + £,
v, = au, AN — (B +do + ), AN + [V,

v, = 523AN — J024AN +

(2.4)

where the index N at the top of the vectors and matrices dictates the principle sub-vectors and
sub-matrices of order N + 1 respectively. Due to the upper-triangular Toeplitz structure of matrices
MY, M§N and the structure of matrix A, the unknown components of the unknown vectors
Y j=1,2,3,4, are derived through the following recurrence relations

'21,0 = f10, Va0 = f20, Usp = f30, Us0= fa0,
v, =—KG13— KaGy 3 — doFy + fi.0,

vy = KGi3+ KaGr 3 — (do + R)Fa + fau,

v3; = alh — (B+do+6)Fs + f.,

vy, =0Fy —doFy + fa5, i=1,2,...,N,

in which G133 and G 3 are non-linear functions of the elements

V100 Y1155 YNy Y205 U215---5 Y2 N-

Also, Fs, s = 2,3, 4 are linear functions of the elements v, o, v, 1,..., v y. Consequently, obtaining
v, j=1,2,3,4, the approximate solutions (2.1) can be characterized by solving v, =Y J. Indeed,

our robust and intelligent implementation let us evaluate the unknowns by some recurrence relations
without the need to solve non-linear block algebraic system (2.4) directly.

3. Numerical example

Defining

E(N) = jelnax €N [y €jn = 2j(t) — 25N (2),

we approximate the solutions of (1.1) by setting the initial conditions z1(0) = 0.323, 22(0) = 0.21,
23(0) = 0.22, z(0) = 0.21 scaled in million and v = 1. The numerical results are illustrated in
Table 2.

Table 1: Description of the Parameters of model (1.1).

Parameter Description Value [2]
a The population whose test is negative 0.00250281 millions
do Natural death rate 0.0000004/ million
b The population whose test is positive 0.006656 millions
B Death due to Corona 0.0109
R The rate constant characterizing the infection 0.000024
& Rate at which recovered individuals lose immunity — 0.00009/million
5 Recovered rete 0.75

VYV
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Table 2: The numerical results for various values of p, v and N.

/"‘:V:_E l /"’:OJ/:%

N E(N) CPU-time | E(N) CPU-time
40 | 4.01 x 107° 2.27 1.61 x 107° 2.23
80 | 8.95 x 107° 25.53 3.06 x 1078 25.72
160 | 5.57 x 107** 31239 |1.61x107*  313.95
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A new preconditioner for the SOR method to solve
multi-linear systems
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Abstract. The preconditioned techniques play a significant role in solving linear and multi-linear
systems. In this paper, we present a new preconditioner of the tensor splitting SOR method for
solving multi-linear systems with M-tensors. Numerical examples confirm our theoretical results
and the efficiency of our new preconditioner. It is apparent that the preconditioner can improve
the method in reducing the number of iterations and the CPU time.

1. Introduction

Recently, solving the multi-linear systems seems to be attractive in many engineering and scientific
computing researches [2], like image processing [3], tensor complementarity problem, and numerical
partial differential equations [4].

Suppose that A € RI™7 is an order m dimension n tensor and b is a vector in R™. Consider the
following tensor equation

Az =, (1.1)

where Ax™~1 € R” is defined as

n

m—1y __ .
(.Aﬂ? )1 = E Ajioig i LigLiz * Ly, 1= 1, 2, e,

1213 Ip=1

where x; denotes the ith component of x € R"”. Many theoretical analysis and algorithms have been
proposed for solving (1.1) [4].

The role of the preconditioning technique is clear in solving linear and multi-linear systems and
if a suitable preconditioner is chosen, the convergence rate of the method can be improved. Some
preconditioner for solving multi-linear systems were introduced in [5,6]. In this paper, we propose
a new preconditioner for the SOR method which is constructed by combination of two existing
preconditioners.

This paper is organized as follows. In Section 2, a new preconditioner is prposed, and the
preconditioned SOR method is constructed. Some numerical examples are given in Section 3 which
illustrate the effectiveness and superiority of the new preconditioned iterative method. Finally,
Section 4 consists of conclusion.

Keywords: SOR method, Preconditioner, Multi-linear system, M-tensor.
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2. Main Results

Preconditioned SOR method

Li et al. [5] and Liu et al. [6] proposed two tensor preconditioners of the form P, = I + S, and
Pg = I + Gg, where:

0 —a1a19..9 0 e 0
0 0 —(9a93...3 - ** 0
Sa = : . 9y
0 0 0 —an_1a(n_1)n...n
0 0 0 0
and
0 00 0
—pBraz1..1 0 0 - 0
—B2a31...1 00 -0
Gg = )
_ﬂn—2a(n_1)1...1 o0 --- 0
—Bn-1ap1.1 0 0 -+ 0
and o = (o), B = (B;) where o; and f; in R are parameters for ¢ = 1,...,n — 1. In this paper we

combine this two preconditioner and propose a more effective preconditioner P = I + S, + G3.
Consider the multi-linear system (1.1). Without loss of generality, we take all the diagonal
entries of the tensor A equal to 1. Applying a nonsingular matrix P as a preconditioner, we have

PAz™! = Pb. (2.1)
We consider A = (I + S, + Gg)A and b= (I + S, + Gg)b. Let
A=D—L—F, and A=T,, —L—F,

with D = ﬁIm, L = LZ,,, where D is the diagonal matrix and —L is the strictly lower triangle
matrix of M(A). Thus

A=T, — L~ F+83Tn — Sal — SoF + GgLy — GsL — G F.

The SOR-type method for solving (2.1) can be written as

= (T + )7, k=1,2,...,
where
1 . A 1 R .
Tp = M(gp)_l]:p, Ep = ;(D —wl), Fp= ;((1 —w)D+wF), ¢ = M(gp)_le.

Theorem 2.1. Let A € R™" be q strong M-tensor. Then for the new preconditioner P, A= PA
is a strong M-tensor for ay, B; € [0,1].

Proof. Since the off-diagonal entries of A are non- positive for a;, 5; € [0,1], so A is a Z-tensor.
Accordlng to this fact that A is a strong M-tensor and A = £ — F is a weak regular splitting,
A = E—F can be a weak regular splitting by considering £ = (I+S5,+Gp)E and F = (I+S.+Gp)F.

Therefore A is a strong M-tensor. O
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3. Numerical examples

A. Hasanpour, M. Mojarrab

In this section, numerical examples are given to show the efficiency of the preconditioned SOR
method. The stopping criterion || Az™~! —b [|[< 10710 is used and a maximum of 1000 iterations
is allowed. We take the starting vector xy and right-hand side vector b equal to ones(n, 1). Finding
the optimal parameter w, we search from 0.01 to 2 in the interval of 0.01. All the examples were
executed in double precision in MATLAB R2014a. We show the number of iterations by “Iter”
and the CPU time in second by “time” for the new preconditioned SOR (PSOR) and the SOR
and former preconditioned SOR (P,SOR and P3SOR) methods, respectively.

Example 3.1. Consider A € RB™ and b € R” in which

aiil = appn =1, @122 = ap(n_1)(n—1) = —0.5,
aiii = 5 + B 4, i=2.3 ... n—1,
Ai(i—1)i = Ai(i—1)(i—1) = —% + %, 1=2,3,...,n—1,
Qi(i+1)i = Qi(i+1)(i+1) — —% + %, 1=2,3,...,n—1,
where
=02 =004 n=004, pp=-004, h= %

From [1], it is found that A is a strong M-tensor. Numerical results in Table 1 with different
sizes of A represent that the new preconditioned method is better than original ones and former
preconditioned SOR methods for solving M-tensor equation. .

Table 1: Numerical results of Example 3.1 with weps = 1.3

PSOR SOR P,SOR P3SOR
n Iter time Iter time Iter time Iter time
10 46 0.020 47 0.025 46 0.023 47 0.025
20 89 0.023 103 0.032 89 0.024 103 0.026
30 114 0.030 158 0.038 114 0.036 158 0.033
40 117 0.034 208  0.043 117  0.036 208 0.039
50 107 0.041 257  0.076 107  0.052 257  0.067

4. Conclusion

In this paper, we proposed a new preconditioner of the tensor splitting SOR method for solving
multi-linear systems with M-tensors. Numerical results show that our new preconditioner is more
effective than the original ones and prior preconditioner that we combined them.
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Abstract. It is well-known that the RBF method is increasingly more accurate on steeper gradient
surfaces and has difficulty accurately approximating flat functions. The apparent reason is that
the flat surfaces are represented by linear combinations of very large shape parameters c. But as
¢ becomes large, so does the condition number. In this paper, we first show that the Powers RBF
r is the best candidate for approximating univariate functions having zero curvature everywhere,
like lines. So for approximating flat functions having very small values of curvature, we introduce
a new transcendental RBF based on the hyperbolic tangent function as a smooth approximant to
¢(r) = r with higher accuracy and better convergence properties than the MQ RBF by decreasing
shape parameter c.

1. Introduction

Given a set of n distinct points {z;}7_; C R and corresponding data values {f; % 1, the RBF
interpolant is given by

s(z) = Z/\m(llx*l’jl!), (1.1)

where ¢(r), r > 0, is some radial function (cf. e.g. [5]). The expansion coefficients \; are determined
from the interpolation conditions s(z;) = f;, 7 = 1,...,n, which leads to the symmetric linear
system A\ = f, where A = [¢(||z; — z|))],<; ;,, - The existence of a solution is assured for positive
definite RBFs and also for conditionally positive definite RBFs by adding a lower degree polynomial
to (1.1). We can introduce a shape parameter as ¢ (%) allowing to scale the basis function ¢
making it flatter as ¢ — oo and spiky as ¢ — 0. So for accurately approximating flat functions,
we need to use too large shape parameters which leads to highly ill-conditioned and even singular
coefficient matrices [2]. In this paper, we first show that the Powers RBF r is the best candidate for
approximating univariate functions having zero curvature everywhere, like lines. Then we introduce
a new transcendental RBF based on the hyperbolic tangent function converging so much faster than
the MQ RBF to r by decreasing c. So one can approximate both steep and gentle gradient surfaces
by not too much small values of c.

2. Main results

Let x and 7 denote curvature and torsion, respectively. The fundamental theorem of curve theory
is given as follows [3].

Keywords: RBF interpolation, Transcendental RBF, Flat surfaces, Curvature.
AMS Mathematical Subject Classification [2010]: 65D05, 65D12, 65D20.
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Theorem 2.1. Two space curves C' and C* with nonzero curvature are congruent (i.e., differ
by the composition of a translation and a rotation) if and only if the corresponding arclength
parametrizations o, o* : [a,b] — R3 have the property that k(s) = k*(s) and 7(s) = 7*(s) for all
s € [a,b].

In the sequel, we just consider the univariate functions i.e parametric vector-valued curves
a : [a,b] — R?. Investigating multivariate flat functions need a vast discussion on one of the most
important concepts in the geometry of surfaces called Gaussian curvature [4], which is beyond the

scope of this note and leave it to our further works.

Corollary 2.2. If a,a* : I — R? are plane curves such that ko = ko, then a and o are
congruent.

Proposition 2.3. A space curve is a line if and only if its curvature is 0 everywhere.
Theorem 2.4. Powers RBF ¢(r) = r exactly approximates lines.

Proof. By considering ¢(r) = r, the RBF interpolant (1.1) is given as
n
s(x) = Z)\j]a: — zjl.
j=1

Now, according to the Corollary 2.2 and Proposition 2.3, it suffices to show that k(s(z)) = 0. For
T < <X < T < Xigp < -0 < Ty, We have

£ (s(@))
K(s(x)) = ’ ‘ ~—= 0 _—o.

(1—1—((1‘1(3(3;)))2); <1+(Al+--~+Ai—(/\i+1+---+/\n))2>

The case x = x; and © = x,, can be proved similarly. O

[SI[9Y

Theorem 2.4 says that working with smooth approximants to ¢(r) = r with high accuracy and
fast convergence properties leads to accurate approximations of flat functions having low small values
of curvature. In [1], we introduced the following new globally supported and infinitely differentiable
transcendental RBF, abbreviated by “RTH RBF”

¢(r) = tanh (f) : (2.1)

C

which is conditionally negative definite of order 1. It has the property

lim rtanh (f> =,
c

c—0t

with much better convergence properties than the Multiquadric RBF (see Theorems 2.3 and 2.4
in [1]). In the next section, we show that the RTH RBF interpolation method leads to accurate

results for functions with both steep and gradient regions.
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3. Numerical Results

We now provide two examples which approves successful role of RTH RBF in approximating func-
tions with zero and small values of curvature. We take different values of the shape parameter c,
n = 200 equidistant center points and m = 125 equidistant evaluation points. We use the maxi-

mum absolute error norm Ly, = max |fi — fi|, where f and f represent the exact and approximate
sSism

solutions, respectively.

Example 3.1. In the first test problem, we approximate the direct line
filz)=2+1, =ze€[-1,1].

The Lo error norms of the RTH RBF interpolation are given in Table 1. The relative error
distribution is plotted in Figure 1 using the RTH RBF interpolation method with ¢ = 0.1. Numerical
results show that the results are in good agreement with the exact solution.

Table 1: L. error norms of RTH RBF interpolation; Example 3.1.

c 1 0.5 0.1 0.01 0.001 0.0001
Loo 1.6x1078 1.01 x 10~ 44%x1079 31x1079 15x10°11 0

x107
T

25

i
3
—T

Relative error

[
T

0.5 "

0 WAA A oA , . n o _
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
X

Figure 1: Relatives errors using the RTH RBF interpolation method for ¢ = 0.1; Example 3.1.

Example 3.2. In the next test problem, we approximate the following function having both steep
and flat regions with corner features.

fa(x) = tanh(60x — 0.01), =€ [-1,1].

The exact and approximate solutions of fa(x) using the RTH RBF interpolation method with
¢ = 0.1 and ¢ = 0.01 are shown in Figure 2. Figure 2-(A) shows some oscillatory behaviour for
¢ = 0.1 in flat regions. But decreasing the shape parameter ¢ completely removes oscillations and
approves the theory. The relative error distribution is plotted in Figure 3 using the RTH RBF
interpolation method with ¢ = 0.01. Results show that we can simulate both steep and flat regions
with intermediate values of the shape parameter c.

\YO



50

Accurately approximating flat functions by a new transcendental RBF
15 T T T T T T T T T 15
Exact Exact
— — — Approximate — — — Approximate
1 [ ir i
[
| |
05 | 1 05 “
| \
\ \
o \ &0 [
| |
/ |
-05F 1 051
J |
1 - 1 /
s s
-1 0.8 0.6 04 -0.2 0.2 0.4 0.6 0.8 1 -1 0.8 0.6 0.4 0.2 0 0.2 04 06 0.8 1
X
(a) (b)

Figure 2: Exact and approximate solutions of f2(z) using the RTH RBF interpolation method for (A) ¢ = 0.1 and
(B) ¢ =0.01; Example 3.2.

%10

251 }\~

15

Relative error

05

X

Figure 3: Relatives errors using the RTH RBF interpolation method for ¢ = 0.01; Example 3.2.

4. Conclusion

In this paper, a new globally supported and infinitely differentiable transcendental RBF named
“RTH RBF” is used for interpolation. Its fast convergence to the Powers RBF ¢(r) = r leads to
accurate results for both steep and gentle gradient surfaces by not too much small values of the
shape parameter c. The given theory can be proved for the multivariate interpolation and used for
high dimensional surfaces. We leave this to our further works.
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Mohammad Mahdi Izadkhah

Abstract. In this paper, a BiCG-like iterative method-minimal residual biconjugate gradient sta-
blilized (MRBiCGStab)- is extended for solving the generalized coupled Sylvester tensor equations.
The presented method uses tensor computations with no matricizations included. The reported
numerical experiments show the performance of the proposed method.

1. Introduction

In this paper, we are concerned with the generalized coupled Sylvester tensor equations of the form

n
ZXj XlAijl X2Aij2"'><NAZ’jN:CZ‘, i:1,2,...,n, (1.1)
j=1
where the matrices A;j € Clgxligt (4,5 = 1,2,...,n, | =1,2,...,N), and the tensors C; €
ClinxxIin(j = 1,2,...,n) are known and the tensors X; € Clin**lin(j = 1,2 ... n) are unknown.

In fact, for a positive integer N, an order N tensor A = (a;,...iy)(1 < i; < I;,j =1,...,N)is a
multidimensional array with I11s--- Iy enteries. O with all enteries zero denotes the zero tensor.
We use k-mode product xp(k=1,2,...,N) in (1.1) that will be defined later. In the sequel, some
basic definitions which will be used, are given from [3].

Definition 1.1. The operator xx(k = 1,2,..., N) represent the k-mode product of a tensor X €
Ch>xIN with a matrix A € C’*!k defined as

Iy,
(X Xk A)il’i2“'ik—1jik+1"'iN = Z Livigig—1ixipt1-in Vjig-
i=1
Definition 1.2. For a tensor A = (aj,.iyjy-jy;) € CI >IN0 ot B = (b, iyjrjn) €
CIrexIaxhix=xIN he the conjugate transpose of A, Where b;,...iy 1 -jx = @jy-juir-in - The tensor
B is denoted by A*. When b B is called the transpose of A, denoted by
AT

i1-ingredn = Qi i

Definition 1.3. Let N and M be positive integers. The inner product of two tensors X,) €
CloxexInxJixxJu js defined by

Iy & JIm

I
<X’y> = Z T Z Z Z Ty i jr-gine Yj1-garin iy -

i1=1 in=171=1 Jm=1

Keywords: tensor equations, MRBiCGStab, iterative method, k-mode product.
AMS Mathematical Subject Classification [2010]: 15A10, 15A69, 15A72, 65F10.
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So the tensor norm generated by this inner product is || X|| = y/(X, X') which is called the tensor
Frobenius norm.

Extended MRBiCGStab method

Definition 1.4. Let X;, ); € Cloxc-xInxJuc=xJu fori =1,2, ... n. if weput X = (&1, Xs, ..., &)
and Q) = (V1,2 ..., Vn), then ((X,2))) = > (X}, Vi) is an inner product and the associated norm
is defined by [|X[|. = \/((X, X)) = v/ 2i; [| 4]

We say that X and 9) are orthogonal if and only if ((X,2))) = 0.

Definition 1.5. Let H; = Cla**lin(; = 1,2, ... n). Then

L:Hy xHy x---xH, — H; xHy x --- x H,

E?:l Xj X1 Aljl X9 A1j2"' XN Ale
n
L Xy, ) = | =1 X1 Az X2 Agja -+ XN Agjn

n
> g1 X X1 Anj1 X2 Apjo - XN Apjn

According to Definition 1.5, the inear system (1.1) can be expressed as L(X}, Xo,..., X,) = C,
where C = (CT,CY,...,CI)T. We use Definition 1.4 and operator £ in Definition 1.5 to construct
the k-th residual tensor of EMRBiCGStab method Ry, = C — L(X) y, Xo g, . .., X i) Where X p, 0 =
1,2,...,n are k-th approximations for the tensor solutions &j,i =1,2,...,n.

2. Extended MRBiCGStab Method

In the special case of (1.1), Beik et al. have developed the gradient-based iterative method [1].
We would like to mention that in the BiCGStab method for solving the system Ax = b, the
product of the linear polynomials are considered in construction of the residual form. In order
to overcome the stagnation of convergence of BiCGStab in some discretized dominated problems,
quadratic stabilization polynomials are used in the MRBiCGStab algorithm [4]. The MRBiCGStab
method computes an approximation o, whose residual is of the form 73, = @3, (A)Poy(A)ro, where
Qi(t) =land for k >1 Q3.(t) = (1 +wit +wat?)(1+wst +wat?) - -+ (1 + wop_1t +woxt?) and the
parameters woj_1 and wyy, are determined at the k-th iteration so that ||r}, || is minimized. Based
on this algorithm, we propose the Extended MRBiCGStab algorithm according to the tensor form
for solving (1.1).  Since the [|R}_,l/« is minimized over two dimensional vector space R?, it may
be expected that the extended MRBiCGStab converges faster than the BiCGStab in which residual
norm is minimized over one dimensional vector space R.

3. Numerical example

In this section, we give numerical results of the EMRBiCGStab method to solve the following
problem

XXlAl X2A2 ><3A3—|—y><131 XQBQ Xngzcl,
X X1 FE1 X9 By x3 B3+ x1 F1 X9 Fy ><3F3:C2,

which show the effectiveness of the proposed algorithm. The matrices A;, B;, F;, F;,i = 1,2, 3 have
been chosen from [2] by the MATLAB function rand of appropriate size, and construct the right-hand
side tensors C;,i = 1,2 such that the exact solutions X*,Y* € C"™*™*! would be tensors with all
enteries equal to one. The initial guess was taken to be the zero tensors and the stopping criterion

HZ% < 107% or Max-iteration = 2000 were used. The corresponding convergence histories of
0 *

EMRBiCGStab method with EBiCG [2] method are depicted in Figure 1.
VY4
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Algorithm 1 The Extended MRBiCGStab method for solving (1.1)

1. Input: matrices A;; and tensors Xj0,Cs, fori,j =1,2,...,nand [ =1,2,...,N
2. Compute Rio=Ci — > 7 | Xjo X1 Aiji X2 Agja -+ XN Ayjn, 1=1,2,...,n

3. Put Pfo=TRlo, i=12...,n

4. Choose arbitrary tensors R o such that Z?Zl(f%i,o, Rio) #0,fori=1,2,...,n
6. For k=0,2,...,2m,... until ||R}; 2|+ small enough Do

7. Compute V;;, = Z] 1 Pig X1 Aij1 X2 Aija -+ XNy Aygn, for i =1,2,...,n

S (RE xRio)
iV e Ri0)

8. o =
9. X1 = Xip+awPry, fori=1,2,....n
10. Rigsr = Rip — awViy, fori=1,2,....n
11. Compute R 1 = PRI Rkt X1 Aij1 X2 Aijo - xn Aign, i=1,2,...,n

n IR R
12. B = _akw
Zi:1<Ri’k7Rz,0>

13. 75¢7k+1 — ﬁi,kJrl + kai*,lm fori=1,2,...,n
14, Pigs1 = Rigsr + BuVig, fori=1,2,...,n

15. 757,]@-&-1 Z] 1P]k+1 X1A1J1 XQAL'JQ"' XN AZJN,fOI"L—l 2 —

R Ri0)
16 a 2 21 1< ik+1 A
k41 (P} r1Ri0)
17. o= Xik+1 + k1 Piky1, fori=1,2,...,n

X,
18. 7?,1'71@_0_2 = 7721'7;@_0_1 — g1 Pipt1, fori=1,2,....n

19. Rik+2 = Rik+1 — ak+173:k+1, fori=1,2,...,n

20. R py2 = D)y Ryke2 X1 Aij1 X2 Agja - XN Ay, for i =1,2,...,n

(Crea Rkt 2 Ry pga)) (Che1 (Ri k42, R7 k+2

_ T (Rik+2,Ri kt2) ( PR 2Ry r2)
21. We+1 = n
(Zr1 (R k2, Riky2) ( e 1<Rl o2 Ri kg2)

-(F )
( T (Ri k2R k+2>) (ZT V(R k2R o)
(= )
(= )

(11 (Ri k2, Ry k+2>) S (Rikt 2R g i k2R ) (21" 1(727 k2R k+2

22. w = (
k2 (E" <R1 k+2> Rl k+z>)( 7:1 i,k+2 Rq k42

) 7

T
) f= Ri k2, Ri k42) ( Ry k2 Ry kg2)
23. Xikye = Xikro — Wer1Rikr2 — Wr2Rikyo, for i =1,2,....n

24. :,k+2 = Ri’kJrQ + wk+1Ri,k+2 + wk+2RZ,k+27 fori=1,2,...,n

—a s 1<R7, k+2° Rt 0
k+1 S (Rikt1:Ri,0)

25. Bry1 =
26. ,Pi*JﬁL? =R; k2 T ﬁk+1( i k+1 T+ ’LU}C+1P¢ k+1 T+ ’LU;C+2'PZ k+1) fori=1,2,...,n
27. EndDo

28. Output: solution X; for (1.1)

V¥o
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T T T T T T T T
—#— EMRBICGStab —+#— EMRBICGStab
—#— EBICG —#— EBICG

log(IR, ,I/IR, 1.
log(IR, /IR, 1.)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration Number Iteration Number

Figure 1: Convergence histories of REE for m = 6,n = 4,1 = 3(left) and m = 8,n = 4,1 = 3(right)
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An efficient Lucas wavelet Galerkin method for solving
time-delay optimal control problems

Sedigheh Sabermahani, Yadollah Ordokhani, Farshid Nourian, Mehrdad
Lakestani

Abstract. Here, we present a numerical scheme to solve optimal control problems with time-
varying delay system. This method is based on Lucas wavelets and Galerkin method. Operational
matrices of integration and delay for Lucas wavelets are proposed. Then, Galerkin method is used
to solve the mentioned problems . Numerical results are included to demonstrate the efficiency of
the present technique.

1. Introduction

One of important class of delay problems is optimal control problems that are used to model
many of the phenomena. Furthermore, there are several numerical methods to solve delay optimal
control problems such as Variational iteration method [1] and finite difference method [2]. In
recent years, the construction and application of different wavelets such as Bernoulli wavelet [3],
Fibonacci wavelet [4], Legendre wavelet [5] has been shown to be a powerful mathematical tool for
discretization of selected problems.

In this work, we apply the extended Lucas wavelets for solving fractional delay optimal control
problems. To this end, we approximate the fractional derivative of the state variables and control
variables in terms of these wavelets. We present new fractional integration and delay operational
matrices for these functions. Then, by employing the operational matrices and Galerkin method,
the problems under consideration are converted into systems of algebraic equations. The validity
of the established methods is studied in one example.

2. Lucas wavelets and properties

The Lucas wavelets are defined over the interval [0, 1] in [6]. We present a new presentation of these
functions in the following form
k-1
Yam(t) = 2 E (2 — 4 ypnes (8, n=1,2,... 28 m=0,1,.. M—1, (21)
n,m \/’LTm m X[271L€_71’2k”11] ’ Yyt ) y Lyttt ’ .

and X[n=t %](t) is the characteristic function, w,, = fol f/gn(t)dt, and Ly, (t),m =0,1,...,M —1
2k—129k— _
denotes the Lucas polynomials. n = 1,2,...,2* ! and k is a positive integer. Also, Lo(t) = 2,

L) =312 ( e ) 2,

]

Keywords: Lucas wavelet, Galerkin method, optimal control problem, time-varying delay system.

AMS Mathematical Subject Classification [2010]: 65T60, 44A45, 49N05.
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2.1. Integration operational matrix of Lucas wavelets

An efficient Lucas wavelet Galerkin method ...

Let
U(t) = 1,0, Y115 V1M1 Y20, V2,05 s V215 - Yoot g, o Ygit pgq]

be Lucas wavelets vector. The integration operational matrix of Lucas wavelets P is defined as
fg U(s)ds ~ PU(t), each of element of this matrix is derived in the following process

k-1

T k—1
Lo (271 =+ 1)x (0

W, 21€ 1’2k 1

k=1 —21
_ 2 m—1\ M ki m—2i—j
== ) Z ( . ) m_iQ /(1 —n) X[;;c%ﬁ%%l](t)'

wn,m (t) = ] (t)

. = 1] m—2i m— i\ m t
n.m = _ 7216]_‘7 1-— m_Qi_j/ J n— n
[ nterts = 2235 (M) S [y (s

= . X ("L . L) szjij (1 N\ n)m72i7j 0] (t)’

Vim = = m—1
t 2 e
0;(t) :/0 s X[Z’z—_ﬁ@kf:l](s)“:/ﬂl SdsXiazt, o (®) + / ()
ok—1 ok—1

ok—1

Here, we expand this function in terms of Lucas wavelets as 6;(t) = > S ZM Y, p10s p(t). There-

fore, we achieve fg Ynm(8)ds = Zs \ ZM ! Oy Vs p(t),

m

@ ?Jm ) o oy
o = Z < > 72@—3(1 — )™ H I, (2.2)
Jj=

2.2. Delay operational matrix of Lucas wavelets

We suppose that 7 = 5%, then U(t —7) = DW(t), t > 7. For this approach, we have

k=1 _
Vom(t—7) = %Lm(Qk—l(t—T)—n—kl), 2 Lt r< -
0, otherwzse

22 [ (91— (n+s)+ 1), o nolds << ;,fsl, = Ymnts(t).
otherwzse

3. Numerical method

Here, we consider

VY
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where X(t) € R, U(t) € RI, (I > q) A(t),B(t),G(t) and H(t) are continuous matrices with
appropriate dimensions, Xy is constant vector and ¢ (t) and ¢o(t) are known functions defined on
the interval [—7,0). In Eq. (3.1), we derive X (¢) and optimal control U(t) which are satisfied in
conditions of problem while extremizing J

S. Sabermahani, Y. Ordokhani, F. Nourian, M. Lakestani

J=XT1)Q(1)X(1)+ /I[XT(t)Q(t)X(t) + UT()R)U(t)]dt, (3.2)

0

where Q(t), R(t) are matrix functions with appropriate dimensions. Also, Q(t) is a symmetric
positive-semi-definite matrix and R(t) is a symmetric positive-definite matrix. Assume that X(t) =
X0 (8), Xa(t), -+ Xi (O], U(t) = [U2(6), Us(t), -+, Uy(®)]F, and [y() = I & W(t), F,(t) = I, @
U (t), where I}, I, are the I-dimensional and g-dimensional identity matrices and @ denotes Kronecker
product. Moreover \i'l(t) and ‘i/q(t),z' =1,2,...,0, j=1,2,...,qare [2F"'M x | and ¢2¥"'M x ¢
matrices. We approximate as X;(t) = XI'U(t), Ui(t) = UjT\I/(t). Therefore, we get X/(t) =
XTW(t), U(t) = UTW,(t), and for X (t), we can see that X (t) = XTPU,(t) + ETU,(t), where
P=IL®P, E=I®E and X (0) ~ ETWU(t). Also, using delay operational matrix of Lucas wavelets,
we expand X (t — 7) and U(t — 7) in terms of them as

o1(t —7), 0<t<r
X(t—1)= n |
XTPDW,(t) + ETD¥,(t), 7<t<1,
do(t —7), 0<t<r
Ut—r1)=

where lA)q =I;® D, lA)l =L, ®D and D is delay operational matrix of Lucas wavelets. Moreover,
we approximate A(t), B(t), G(t), and H(t). We substitute the approximations in the system then
we derive ®(t). The resulting equation can be solved using Galerkin method YV = <<i‘, U). Also, we
substitute the mentioned approximations and the performance index J, so we have J* = J + \TY,
where A = Ay, n=1,2,..., 2F=1 m =0,1,..., M — 1 are the unknown multipliers coefficients.
For deriving extremum of J*, the necessary condition is that the following equations hold % =
0, %‘{; = 0, %‘]; = 0. We can solve these equations using "FindRoot” package in Mathematica
software.

4. Numerical results

Example. Consider J = %XQ(Q) + % f02 U?(t)dt, subject to the time-delay system

/

X=Xt +X(t-1)+U®), 0<t<2, Xt)=1, -1<t<0,

in which the analytic solution for U(t) is U(t) = { BT A0, 0SS L an with § = —0.3932,

de s 1<t<2.
J ~ 3.1017 [4]. This example solved by several numerical techniques such as variational iteration
method [1] and finite difference method [2] with h = 0.01. In Table 1, these numerical results are

compared to the results obtained using the present method for different values of k, M.
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Table 1: Comparison of the value of J, in Example.

Numerical methods J
Variational iteration method [1] 3.1091
Finite difference method [2] 3.102519

Present technique (k=3, M=6)  3.10078
Present technique (k=3, M=8)  3.10101
Exact value 3.1017
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Numerical solution of mixed fractional heston partial
differential equation

Fereshteh Goldoust

Abstract. In this work the Mixed Fractional Heston partial differential equation option pricing
model considered and Legendre wavelet method (LWM) use to solve this equation with reducing
feature the PDEs problem into the solution of ODEs system. The wavelet base is used in approxi-
mation due to its simplicity and efficiency. Some numerical schemes has compared with the LWM
in result.

1. Introduction

Since the Black-Scholes model was introduced forty years ago, practitioners and academics have
been proposing refinements there of in order to take into account the specific behaviour of market
data. In particular, stochastic volatility models, turning the constant Black-Scholes instantaneous
volatility of returns into a stochastic process, have been studied and used heavily [1-3].The Heston
Model is one of the most widely used stochastic volatility (SV) models today. Its attractiveness lies
in the powerful duality of its tractability and robustness relative to other SV models [4]. To remedy
this issue, several authors have suggested the addition of jumps, either in the form of an independent
Levy process or within the more general framework of affine processes [5-7]. In continuous time,
this long-memory behaviour has been modelled through fractional Brownian motion with Hurst
exponent strictly greater than 1/2 [8,9]. Fractional Brownian motion has its pitfalls though, since
it is not a semimartingale,and yields arbitrage opportunities [10].

2. Mixed Fractional Heston Model

One of the most widely used random processes in financial market modeling is the use of memory
processes. Which includes fractional Brownian motion and its derivative process. This process is the
generalization of a parameter of standard Brownian motion ,and this parameter is named after the
English researcher Harold Edwin Hurst with H € (0,1). In the case where H = %, the Brownian
motion of the fraction corresponds to the standard Brownian motion [11-13].

2.1. Fractional Brownian motion

The purpose of adding the long-run dependency feature to the geometric Brownian model is to
obtain a European stock price dependent on a stock whose dynamics follow the fractional geometric
model. The fractional geometric Brownian model is

dS(t) = uS(t)dt + o S(t)dB (), (2.1)

Keywords: Stochastic differential equation, Partial differential equation, Mixed Fractional Heston Model, Legendre
Wavelet Method (LWM).

AMS Mathematical Subject Classification [2010]: 13F55, 05E40, 05C65 .
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Where p is the expected return on the stock and o, stock price volatility and B (t) are the
Brownian deficit.

Numerical solution of mixed fractional Heston

2.2. Mixed Fractional Heston partial differential equation

To fit a real market, generalizations to the geometric Brownie model are needed, one of which is
random volatility models. In this type of model, volatility is considered as a positive process. So if
the price (discounted) of the commodity is at risk, in the differential equation

dS(t) = uS(t)dt + oSE)dW (t). (2.2)

Now, if the turbulence of the Discounted Feynman-Kac Theorem [14-16] follows the Cox-Ingersell
process, where pu, expected stock returns, k, average volatility return rate, n, long-term volatility
average, o, Heston model volatility, B1; and Bg; are standard Brownian motions with a correlation
coefficient of p, which are p € (—1,1) , And S(¢) and V(t) are stock prices and volatility rates,
respectively.

dS(t) = pS(t)dt + /V(E)S(t)dMH (¢
AV (t) = k(n— V(¢ dt—i—m/V dM?H (2.3)
AMYH (1) d M2 (¢ ) = p(dt + athQH 1dt).

Where Mtl’H and ME’H, are fractional mixed Brownian with H € (%, 0), is a Hurst parameter.
By applying I'TOs lemmaThe Mixed Fractional Heston partial differential equation pricing model
as follows

du o2 H2H-1 &*u 2 21, 0%u
at+vs()( Ht )82+UU( +a“Ht )(%2
0%u ou ou
2 7 2H—1 o
+ovsp(l+ o“Ht )8880 N5y, ~ Tt +rs 95" (2.4)

3. Metodology

The wavelet basis is constructed from a single function, which is called the mother wavelet. Legendre
differential equation [17-20]. One dimension Legendre wavelets over the interval [0, 1] defined as

— 1. = n—1 n
Un,m () { (m+ 5)22Pm(2k$ —2n+1), ok—1 <z < W’O’ 0.w. (3.1)

With n = 1,2,..,2k —1,m = 0,1,2,.... M — 1. In Eq. (3.1) {P,,}’s are ordinary Legendre
functions of order m is defined over the interval[—1, 1]. Legendre wavelet is an orthonormal set as

1
/0 ¢n,m(x)wn’,m/ (.T)dl’ = (5n,n’6m,m’~ (32)

Any element f € L?([0,1]), may be expanded as

J}) = Z Z Cn,m'¢n,m<x)7 (3.3)
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With boundary condition u(s,v,0) = 51(s,v,t) and

F. Goldoust

ou(s,v,0)

ot :/32(S>U7t)7

B
ait‘ = CT (s, 0,t)1(s,v,1), (3.4)
u(s,v,t) = OF (s, 0, 1) P(s,0,1) + Ba(u, s,1). (3.5)

Substituting (3.4) and (3.5) in (2.4), we obtain

02CT (s,v,1)
TP¢(& v,1) +

02C7T (s,v,t)

d?Bs(u, s,t)
T

d2 )
500 (5,0, 1) + LD iy

d dCT(s,v,t d dfs(u,s,t
ay(LIE0 ) b oy 4 dSBQ(dv)

ds dv
aCT (s, v, t dpBa(u, s, t
( ) ﬂQ(dS )dTw)

dBa(u, s, t)
dv

CT(s,v,t) =ay (

+ o
d"y)
+ au( Py(s,v,t) +

+ as( Py(s,v,t) + ')

— a(CT (5,0, )P + Bod™ 1)),

Js
00T (s,v,1)
ov

which 1 = d¢(s,v,t).

4. Results

The Mixed Fractional Heston partial differential equation pricing model can be solved for unknown
coefficients of the vector, in this case, Adomian decomposition method have used [21]. Consequently,
the solution can be calculated C(s, v, t).

Table 1: The values of parameters.

p 0 n a H

0.06 0.04 0.12 02 3/4
0.1 09 02 05 3/4

5. Conclusion

The Legendre wavelet method has been applied to solve the Mixed Fractional Heston partial dif-
ferential equation pricing model which these PDE equations have been derived from stochastic
differential equations by using one of the important stochastic calculous Lemma named Ito. Also in
this work results of LWM have been compared with the Adomian Decomposition Method (ADM).
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Figure 1: Solution Mixed Fractional Heston PDE model by LWM & ADM

References

1]

J.P. Fouque, G. Papanicolaou, R. Sircar, K. Solna, Multiscale Stochastic Volatility for Equity,
Interest Rate, and Credit Derivatives, CUP, 2011.

M. Fukasawa, Asymptotic analysis for stochastic volatility: martingale expansion, Finance and
Stochastics, 15 (2011) 635-654.

J. Gatheral, The Volatility Surface: a practitioner’s guide, Wiley, 2006.
N. Moodley, The Heston Model: A Practical Approach, 2005, 1-53

D.S. Bates, Jumps and stochastic volatility: exchange rate processes implicit in Deutsche Mark
options. Review of Financial Studies, 9 (1996) 69-107.

A. Jacquier, M. Keller-Ressel, A. Mijatoviffic, Large deviations and stochastic volatility with
jumps: asymptotic implied volatility for affine models. Stochastics, 85 (2013) 321-345.

C.W.J. Granger, R. Joyeux, An introduction to long memory time series models and fractional
differencing. Journal of Time Series Analysis, 1 (1980) 15-39.

F. Comte, E. Renault, Long memory in continuous-time stochastic volatility models, Math
Finance, 8 (1998) 291-323, .

F. Comte, L. Coutin, E. Renault, Affine fractional stochastic volatility models, Annals of Fi-
nance, 8 (2012) 337-378.

[10] C. Bayer, P.K. Friz, J. Gatheral, Pricing Under Rough Volatility, Quantitative Finance, 16

(2016) 887-904.

[11] B. Yan, Option Pricing under the generalized mized fractional Brownian motion model, Master

Thesis, University of Wollongong, 2014.

[12] M. Zili, On the mixed fractional Brownian motion, Journal of Applied Mathematics and

Stochastic Analysis, Vol. (2006), Article ID 32435, 9 pages.
V¥4



Univerity of Guilan

[13] A.D. Wentzell, A course in the theory of stochastic processes, SIAM Review, 2 (1982) 361-362.

F. Goldoust

[14] G. Adomain, Stochastic differential equations, Kluwer, Boston, 1994.
[15] J. D. Dufly, Finite difference method in financial engineering, 2006.
[16] S. E. Shreve, Stochastic calculus for finance- continuous time model, springer, 2003.

[17] J.S. Gu, W.S. Jiang, The Haar Wavelets operational matrix of integration, International Jour-
nal of Systems Science, 27 (1996) 623-628.

[18] M. Razzaghi, S. Yousefi, Legendre Wavelets Direct method for Variational problems, Mathe-
matics and Computers in Simulation, 53 (2000) 185-192.

[19] R.Y. Chang, M.L. Wang, Shifted Legendre directs method for Variational problems, Journal
of Optimization Theory and Application, 39 (1983) 22-307.

[20] L. Nanshan, E.B. Lin, Legendre wavelet method for numerical solutions of partial differential
equations, Wiley Interscience, (2009) 85-88.

[21] J. Biazar , F. Goldoust, F. Mehrdoust, On the Numerical Solutions of Heston Partial Differ-
ential Equation, Mathematical Sciences Letters, 4 (2015) 63-68.

Fereshteh Goldoust
Department of Applied Mathematics, Bandar Anzali Branch, Islamic Azad Univertsity, Bandar Anzali, Iran
email address: feriigolii@gmail.com, f.goldoust@iaubanz.ac.ir,

V0o



T The 9*" Seminar on Numerical Analysis and its Applications

9-11 May 2022, University of Guilan, Rasht, Iran

University of Guilan

Stable Gaussian elimination algorithm for ill-conditioned
banded toeplitz

Nasser Akhoundi

Abstract. In this paper, banded Toeplitz matrices generated by f(8) = (2(1 — cos(d — )))?
are studied. The function f is a real non-negative function with a zero of order 2d at 6. Hence
the generating matrix is an ill-conditioned Hermitian positive definite matrix. We propose an O(n)
recursive Gaussian elimination algorithm to solve the linear systems with these matrices. Numerical
experiments show that our proposed method is faster and more stable than the stable Levinson
algorithm.

1. Introduction

Toeplitz matrices 1), = (ti—j)ijzl _,, can be interpreted as Fourier coefficients of the generating
function f(0) = S.°_ t,e™*?, defined on [—m, 7], ie., t = % ffﬂ f(0)e=*04d0 for k = 0,+1,+2,...

[e.e]
. If the generating function f(6) is non-negative and real, then 7,, is Hermitian positive definite
(HPD) matrix, furthermore for the even function f, The Toeplitz matrix T,, is real and symmetric.

In this paper we assume that

F(8) = (2(1 = cos(6 - 9)))“, (1.1)
where 6 € [—7, 7] is a constant number. In this case we name the generated Toeplitz matrix by TGSCQ.

Té’i) is banded HPD, with bandwidth 2d — 1. For the special case 6 = 0 we omit the subscript 6 in

Tg(i) and we name it Téd). These linear systems arise in the discretization of diferential equations.

)

In [3] the authors show that for general generating function f where |f| has zeros of even order,
their singularity lies in banded Toeplitz generated from 1.1 and these banded Toeplitz matrices
can be perform as a good preconditioner. Function f in (1.1) has zero of order 2d at 9~, hence the
condition number of these matrices can be very large. As an example for d = 2, in [1], the authors

showed that the condition number of these matrices is about 162(”3—?)4.

2. Main Results

We use the following theorem [4] to describe our Gaussian elimination method.

Theorem 2.1. Let Té(cg be an n-by-n, banded Toeplitz matriz with bandwidth 2d — 1 generated by
f(0) = (2(1 — cos(0 — 0)))%. Then

d d—1 1 d—1 _ o _(d—1
Téi - Té(,n )Té(,rz —way' Vel —wJay ey, (2.1)

Keywords: Toeplitz matrices, Fast Toeplitz solver, Levinson Algorithm.
AMS Mathematical Subject Classification [2010]: 65F05, 15B05 , 65F15.
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where

Stable Gaussian elimination algorithm for ill-conditioned banded toeplitz

agd*U _ ZTTOSC;*”(l :n, 1),

and Z is the down shift matriz z;; = 0;—j1 (d;; is the Kronecker delta).

Let w = ¢ and define the unitary diagonal matrix ) = diag (1, w,w?, ... ,w"_l), then Té(sz =

TV, Hence if we let § = 0 in (2.1) we have
T\ = =) _ fd=Del _ jald=lel" (2.2)

where al¢=1) = ZTTédfl)(l :n,1). We define
H@D = =) (2.3)
T —peld=Del — greld—bel (2.4)
—c1—2 —ef —Cp

a d T Jga |, (2.5)

where T4 Veld=1) = a(d=1) 5p4d ¢d-1) = (cr d cn)T. Relation (2.1), is the core of our algorithm
to solve the linear system Téd)m(d) = b. In fact we can define the following recursive linear systems
to solve qud)x =b.

Tl @ = p= 1A D1dgd — p-d-Dp — gd-1) (2.6)
Hndfl)x(d) = pld=1) 5 .. )
Hfll)x(d) - M (2.8)
To construct the linear system H,(ld_l)a:(d) = 2@ and then solving it, we need to compute

T,gdil)x(d_l) = b, and Tédil)c(d_l) = al@1), Again we can compute them recursively. Lastly
we need to solve Tél)c(l) =a® and Tfll)x(l) =b. As we know, Tél) = tridiag(—1,2, —1). By simple
calculation we can see that, the regular Gaussian elimination for this matrix can be performed as
follows.

The complexity of Algorithm 1 is O(n), and for all £ > 1, 1 < a(k) < 2, so this algorithm is
stable. The procedure to compute Téd)x(d) = b is described in Algorithm 2.

The matrix Hr(ldfl) =T, 751) — c(d_l)elT —J c(d_l)eg coincides with the matrix 7, él) except the first
and last column. If we define the permutation matrix E, as

0n72 In72 0n72

E, = 1 05_1 0 , (29)
0 o, 1

then H,, = EanEg has the following structure

1)
- T R
i, =[1n-2 , 2.10
( S T) ( )
where R = (d Jd), S = (—e1 —en,g)T, and
(b1 =2 —by,
T = ( o b 2). (2.11)

Hence, we can solve the linear system Hqu_l)w(d_l)x(d) = x(@1) in line 9 Algorithm 2 by the

Gaussian elimination (Algorithm 1.) in O(n).
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N. Akhoundi

Algorithm 1 Gaussian elimination algorithm to solve T, T(ll)x =b

1 Set a(1) = 2.

2 Fork=2:n

3 MM=2—giﬁ

4 bk)=bk)—alk—1)*b(k—1)
5 EndFor

6 x(n) = b(n)/a(n).

7 For(k=n—1:-1:1)

8  x(k) = (b(k) +x(k+1))/a(k)
9 EndFor

Algorithm 2 Recursive procedure to solve Téd)xd =b

1: procedure x(? < Recursive(b, d)

2 If(d==1)

3: return x =17, Vb (by Algorithm 1.)
4: else
5: Define al@—1) = ZTTrgdfl)el
6: Compute x(4~1) = Recursive(b,d — 1)
T Compute ¢~ = Recursive(al® 1, d — 1)
8: Define Hfld_l) as defined in (2.4)
9: Compute x(@ = Hn_(d_l)x(d_l)
10: return x(4.
8: end if

9: end procedure
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Table 1: Comparison the results of GBD and GLev Algorithm for T, 52) and T, 724)

Results for Ty(Lz) Results for TT(L4)

n GBD Glev GBD Glev

[ CPU 2] CPU [l | CPU [ CPU

29 1.32x 1072 [ 0.0013 | 4.68 x 10~ 12 0.0101 | 2.86 x 10710 ] 0.0053 | 9.42 x 10~10 | 0.0112

2101 159 x 10~ | 0.0018 | 2.02 x 10~ !¢ 0.0221 | 7.34x 1079 ] 0.0038 | 6.23 x 1079 | 0.0342

2111 6.56 x 1011 [ 0.0054 | 7.80 x 101! 0.0494 | 5.96 x 10~8 | 0.0066 | 6.85 x 10~% | 0.0513

2121 248 x 10710 [ 0.0152 | 3.14x 107 | 0.1452 | 4.96 x 107 | 0.0161 | 4.68 x 10~% | 0.1501

2131 1.02x107% [0.0325 | 1.25x 1079 0.7443 | 4.02x107% [ 0.0710 | 5.17 x 10~% | 0.7321

2111 4.04x107% [0.1253 ] 5.11x 1079 2.8594 | 3.20x 107° | 0.2238 | 6.21 x 10~ % 3.001

215 1.60 x 108 | 0.4203 | 1.70 x 10~8 11.3476 | 2.57 x 10~% | 0.7596 0.0084 11.4521

216 1 6.3628 x 10~% | 1.3627 | 4.2896 x 10~ | 53.8154 0.0021 2.8229 0.0338 54.9231

3. Numerical Experiments

In this section, we perform some numerical examples to show the efficiency of the proposed method.
All tests were carried out in double precision with a MATLAB code. In this section, we compare our
method GBD (Gaussian elimination for banded Toeplitz matrices) with GLev (general Levinson
algorithm) [2].
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Perturbed Simpson-type inequality via h—convex functions

Ali Barani, Naser Abbasi

Abstract. In this paper the celebrate Simpson-type inequality for functions whose n—th deriva-
tives in absolute value are h—convex is introduced.

1. Introduction

One of the most important results in numerical analysis for approximate integrals is Simpson’s
inequality as follows

a+b

= fla) +4£(5 sago!f Pl (b = a)”, (1.1)

— 2880

)+ 10| < 55

where the the function f : [a,b] — R is supposed to be four times continuously differentiable on
(a,b) and
1/ Do :== sup |fH(2)] < o0,
ze(a,b
see [7]. Then several generalization of (1.1) appeared in the literature by imposing the convexity and
generalized convexity conditions on |f(™)| for n = 1,2,3,... (see for example [1,3]). The perturbed
Simpson’s formula investigated by Liu in [4] as follows.

Theorem 1.1. Let f : [a,b] — R be n—times continuously differentiable on (a,b). Then

b b a a
" [ suta) M @)da = [ @) (1) + 47 (“52) + 1)
[251] (= )b ) 5 ath (1.2)
+Z 2+1'2211f ()

where [“51] is the integer part of “5* and

z—a)" b—a)(z—a)" 1 u
Sp(x) ;:{ : n!) 4 6)((71—1))! B , T € [a, 457],
(:E:z?) - (b_(é)(gf:lb))! ,x € (a+b b]

(=

2

Then several applications and improvements appeared in literature in [5, 6, 9] and references
therein. Note that for n = 1,2,3,4 there are no perturbation terms so the perturbed Simpson’s
inequality is obtained from Theorem 1.1 as follows.

Keywords: Simpson-type inequality, h—convex function, s—convex function.
AMS Mathematical Subject Classification [2010]: 26D15, 26A51.
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Theorem 1.2. Let f : [a,b] — R be n—times continuously differentiable on (a,b) such that n > 4
and Hf(n)Hoo L)) |f(")(a:)\ < 00. Then

Simpson-type inequality

a+b

z)d = fla) +ar (52 + 1)

[n 1] — )™t oy a+b (n —2)(b— a)" 13)

+Z 3(2i +1'221 A (T) S 3(n+ 1)12n

On the other hand the class of h-convex functions was introduced by S. Varosanec in [2] which
contains the some important subclasses for example convex, quasi convex, P—convex and s—convex
functions.

Definition 1.3. The function f : I C R — R is said to be h—convex for a function h : J — (0, +00)
with (0,1) C J, if for every x,y € I and t € (0, 1) one has

f(A =)z +ty) < h(1 —1)f(x) + h(t)f(y).

Then several authors investigated more generalizations and applications on this notion, see for
example [8]. Motivated by above results in this paper we obtain several Simpson-type inequalities
for functions whose n—th derivatives in absolute value are h—convex.

2. Main results

To proceed we set

(251
— atb (= 1)(b— ) o ath
o(a,b) = f(a) +4f ( )+f(b)+; ey o)

The following lemma is a consequence of Theorem 1.1.

Lemma 2.1. Let f : [a,b] - R be n—times continuously differentiable on (a,b). Then

1 b
(1" [ @1 =+ )it = [ fa)do— alab) (2.1)
0 a
where byt
._ _(:L!TH_ (t" — ”t?l) ,teo,3],
Vn(t) — { (_1)n(zl_a)n+1 ((1 _ t)n o n(l_é)n—l) t c (% 1]

Now, we obtain a version of Simpson’s type inequality for h—convex functions.

Theorem 2.2. Let f : [a,b] — R be n—times continuously differentiable on (a,b) such that n > 4.
Suppose that f™ € La,b] and |f™)| is a h—convex function on [a,b]. Then

z)dx — o(a, b)‘

i (2.2)
< (bn‘)+ [/ ("t =t") (M1 =)+ (D)) dt | (If™ (@) + 1 O)]).
! 0
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In Theorem 2.2, if h(t) = t, for every ¢ € [0, 1] then we get a version of Simpson’s type inequality
related to convex functions.

A. Barani, N. Abbasi

Theorem 2.3. Let f : [a,b] — R be n—times continuously differentiable on (a,b) such that n > 4.
Suppose that f™ € La,b] and |f™)| is a convex function on [a,b]. Then

[(n = 2)(|S" (@)] + /" (B)])]

— <
z)de —ofab)| < 3(n + 1)l2n+1

(b — a)n+1, (23)

For quasi convex case we derive the next theorem from Theorem 2.2, which investigate in [5, p.
49].

Theorem 2.4. Let f : [a,b] — R be n—times continuously differentiable on (a,b) such that n > 4.
Suppose that f™ € Lla,b] and || is a quasiconvex function on [a,b]. Then

¢ (n = 2) max {|f")(a)], |f " (0)| h
/a f(x)dz — o(a,b)| < 3(i+1)!2” }(b—a) 1, (2.4)

Pick h(t) = t*, for every t € [0,1] and some s € (0,1) in Theorem 2.2 then we deduce the next
result.

Theorem 2.5. Let f : [a,b] — [0,+00) be n—times continuously differentiable on (a,b) such that
n > 4. Suppose that (™) € Lla,b] and |f™| is a s—convex function on [a,b], for some f € (0,1).
Then we have

dx — o(a,b)
2.5
[I(n s)+ n?+ns—s ] (|f(n)(a)| + ‘f(n)(b)D (b— a)"t? (2.5)
3 (n+s)(n+ s+ 1)2ntstl o ,

where I(n, s) fo (2=t —m))(1 — t)*dt.
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The irreducible representation of general linear methods

Rana Akbari, Gholamreza Hojjati, Ali Abdi

Abstract. In this paper, we discuss equivalence and reducibility consents of the general linear
methods (GLMs) for ordinary differential equations which are useful in studding the stability prop-
erties of the methods. Also, we give a representation of linear multistep methods as irreducible
GLMs. Some examples of reducible methods and their equivalents along with some irreducible
GLMs are examined.

1. Introduction

A general linear method (GLM) of order p and stage order ¢ for the numerical solution of the
autonomous initial value problem (IVP)

y(zo) = Yo,
utilizes r input and output values, and s stage values. The vectors y"~1 = [yz["*l]};‘zl and yl" =

[yz[n}]le are respectively collection of the quantities imported at the beginning of step number n

and the quantities exported at the end of this step. Also, Y[ = [Y;[n]]f:l is an approximation of
stage order ¢ to the vector y(zp—1 + ch) = [y(zn—1 + ¢;ih)];_;. A GLM used to solve (1.1) takes the
form [1]

Vil = h(A @ L) f(YI) + (U ® L)y,

y" = W(B @ L,) fY) + (V @ L)yl 1.

where A , U, B and V are the coefficients matrices of the method. This formulation might be
reducible. Hence, Butcher and Hill discovered [2] a compact representation of linear multistep
methods (LMMs) with » = k inputs and s = 1 stage. The main focus of this paper is on the
irreducible representation of GLMs. We define equivalence and reducibility concepts of GLMs.
ALso, an irreducible GLM representation is presented for linear multistep methods. Our last step
will be to look at examples of GLMs and examine their irreducibility.

(1.2)

2. Reducibility of GLMs

It is possible for two numerical methods to have somewhat different appearances, but when applied
to an IVP, they ultimately give the same answer. It allows us to define the equivalence between the
two GLMs.

Keywords: General linear methods, Linear multistep methods, Equivalence, Reducibility.
AMS Mathematical Subject Classification [2010]: 65L05.
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Definition 2.1. Two GLMs are equivalent if they yield the same numerical solution for all initial
value problems, for a small enough stepsize h.

The irreducible representation of general linear methods

Identifying whether two GLMs are equivalent requires discussion of the concept of reducibility.
If a GLM can be partitioned in such a way that s = s; +s9 and r = r; +r9+rg with so+ro+73 > 0,
so that it has the following sparsity pattern

Ain 0 |Un 0 Uss
Agr Az | Ut Uz 0
B 0 Vi1 0 Vis |, (2.1)
By1 Bao | Vo1 Voo Va3
0 0 0 0 Viss

then we say that the method is reducible; otherwise the method is said to be irreducible [3,4].

3. The LMM as an irreducible GLM

The k-step LMMs with the stepsize h > 0 may be written as

k k
Yn =Y ayn—j + 1Y Bif (Yn—)- (3.1)
j=1 j=0
These methods can be expressed as GLMs with s = 1, »r = 2k and the coefficients matrices
[ Bo a1 -0 g1 o Bio B Br ]
Bo|lor -+ k-1 ar P Br-1 Bk
o|1 -- 0 o 0 .- 0 0
{g ‘(ﬂ: 0/0 - 1 0 0 0o 0 | (32)
110 - 0 0 0 : 0 0
01]0 o o0 1 : 0 0
L ojo -~ 0 0 0 : 1 0 |

Taking s1 =1, s =0and r; =k, ro =0, r3 = k as an assumption, this representation is reducible.
Special cases of LMMs may be represented in a more compact way. Butcher and Hill [2] discovered
a compact representation of LMMs with r = k inputs and s = 1 stage. Defining 3"~ with only &
inputs as

k
n—1
"= ST (gynrkeiog + B Yniring), (33)
j=k—i+1
the LMMs can be written in the form

U = oS (4n) + L)1 (s + b5 f(un—)) = hbof(un) + v,

y' = S i1 (G Ynt1ak—icg + 1B f(Ynt1h—i=j)) = Cr—it1¥n + hBe—is1 f (yn)
+ Z?:k—z‘—&-Q(ajyn-&-l-l—k—i—j + B f(Ynt14k—i—j)) = k—it180 + Pr—iv1hf (yn) + Oék—z‘+1y;[cn71] + yl[zl]-

o
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Hence, we have representation

R. Akbari, G. Hojjati, A. Abdi

Bo 0 0 0 0 1
Oékﬁo + Bk 0 0 0 0 Q
1 0 0 0

AlU ak—180 + Br-1 Qf—1
{7%} : T (3:4)

0&2604‘62 0 0 0 . Qa9
a1 fo + B o 0 0 -+ 1 o

o

4. Examples

Example 4.1. The GLM form of the modified extended backward differentiation formulas (MEBDFs)
[5] can be written with the coefficients matrices

B 0 0
A= [ —r1Be B O ] ;
Bk — Bi—1 Br+1 Bk

—Gp—1 —G&p_2 o —day —é&y
U= | Gr_10r_1 — G2 GQr_16p_2— Qp_3 -+ GQp_141 —&g G&r_149 |,
i —&p_1 —Gp—2 —én —&o |
[ Bk = Br—1 Brs1 Br —Gp—1 —Qp_g -+ —G1 —Gp |
0 0 0 1 0 0 0
B= v=|
0 0 0 0 0 0 0 0
L0 0 0 0 0 10|

Since this method cannot be interpreted with the sparsity pattern (2.1), so = r9 = r3 =0, so it is
irreducible.

Example 4.2. The 2-step LMM given by

AU 111 0
5V = 111 0],
110 0

is reducible with the assumption of ro = 1 and sy = r3 = 0, and it corresponds to backward Euler

method
111
1 .
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A modification of Griinwald-Letnikov derivative in image
processing

Hoda Jalalinejad, Ali Tavakoli

Abstract. In order to better show the rate of changes of the derivative in image processing, we
need to redefine the Griinwald-Letnikov derivative. In this paper, we highlight the problems of
Griinwald-Letnikov derivative in image processing and based on, we present a new definition of
Griinwald-Letnikov derivative to improve these problems.

1. Introduction

The fractional differential equation had been studied over the last 300 years. Recently, the fractional
differential equation has used for image and signal processing. In 2003, Mathieu et al. applied the
fractional differentiation for edge detection [5]. Gao et al. in [2] applied an improved fractional
differential operator based on a piecewise quaternion for image enhancement. Furthermore, in [4],
the generalized fractional image denoising algorithm based on Srivastava-owa fractional differential
operator is introduced for image denoising. The Griinwald-Letnikov derivative is used for image
enhancement in [6]. In [1] Gao et al. by development of the real fractional differential and its
applications in the signal processing, extended the quaternion fractional differential (QFD), based
on Griinwald-Letnikov and apply it to edge detection of colour image. In this paper, we investigate
some problems of Griinwald-Letnikov derivative in image processing and then, improve them with

a new definition.

2. Preliminaries

In this section, we introduce the Griinwald-Letnikov derivative and discuss why we want to modify
this definition.

Definition 2.1. The Griinwald-Letnikov derivative for one variable function f is defined as follows:

[£52]
5 4 fa) = lim b 3 (<17 (%) o= rh).
— r=0

where

<f> G +E)(?(Z i)r 1)

and I' is the Gamma function and a is a real constant.

Keywords: Griinwald-Letnikov derivative, image processinge, edge detection..
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In image processing, the value of f(z,y) is called the color intensity of image at point (x,y) where
x and y are spatial coordinates. Therefore, the Griinwald-Letnikov derivative in two dimension in
x-direction can be defined as follow [3,6]:

A modification of Griinwald-Letnikov derivative in image processing

De_, fozy) = [f(z,y) —af(z—1,y) + Qe E@=20) (2.1)

Similarly, the Griinwald-Letnikov derivative is defined in y-direction. Hence, the Griinwald-Letnikov
fractional derivative is defined by:

Dg_f(w,y) = \/(Dg_ ful, 1) + (DE_ 1 fy(w,9)2. (2.2)

To summarize, we present two examples to show that it is better to modify the definition of
Griinwald-Letnikov derivative.

Example 2.2. Let f(z — 1,y) = f(z — 2,y) = f(z,y) = 250. By (2.1) we get
o ala—1)
D¢_ 1 fo(x,y) = 250 — @250 + TQE)() =(1—-a)(2—-a)l25,

that implies
0 < Dg_p fo(z,y) < 250.

In the special case a = 1/2, we have D& _; f.(x,y) = 93.75.
Example 2.3. Let f(z —2,y) = f(x — 1,y) = f(z,y) = 1. We have

D& folz,y) =1 —la+ 220 — (1 —a)(2 - a)/2.

Again, for 0 < a < 1, we have
0<Dg_rfa(z,y) <1

In this examples, since the value of f is constant in z-direction, we have expect no change or a
few change in the derivative of f in z-direction. However, we see the value of D& _; f(z,y) severely
depends on the intensity of f compared to the difference of f and their z-neighbourhoods.

Therefore, in order to better represent the rate of changes of the derivative, we modify the
definition of Grinwald-Letnikov derivative.

3. Main result

In this section, we express a modified definition of Griinwald-Letnikov derivative. By considering

ala—1)

2 f(x727y)|a

X(CL‘,y) = If(x,y) *Oéf(l’*l,y)+
and
M(z,y) = min{f(e,). £z~ 1,y), £~ 2.)},

where s > 255 is an integer number and 0 < n < 1 is a real number, the equation of the line passing
through of two points (0, M (z,y)) and (s,0) is

Y (z,y) = M(z,y) <5—)2(fﬂy)> |

\2Y
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Now, we define the modified Griinwald-Letnikov derivative in x-direction as follow:

H. Jalalinejad, A. Tavakoli

f(x,y)—af(:c—1,y)+Mf($_2ay) (3.1)

Y(z,y)+1 ’

ng‘_LfCE(‘T’y) =

that the value 1 is added to Y (x,y) to avoid of vanishing the denominator. By (3.1), we get

N Sn—i—lA
mDG—fo(x’y) = 9(8— |A|) +5n+15

where 6 = min{f(z,y), f(x — 1,y), f(z — 2,y)} and A = Dg_ fo(z,y).

By definition the modified Grinwald-Letnikov derivative in y-direction, the modified Griinwald-
Letnikov fractional derivative can be defined by

D& (@,9) =\ (nDE_ Lo 1) + (D o, 9))2 (3.2)

Now, we compute the modifed Griinwald-Letnikov derivative for the preceding examples.
For Examples Example 2.2, we have

25051
250(s — 250) + sn+1’

0<mDg pfe(z,y) <

in which 0 < a < 1. The special case o = 1/2,5 = 255 and n = 1 yields ,,D&_; fo(x,y) = 57.8725.

For Example 2.3,

in which 0 < o < 1.

4. Numerical results

In this section, we show that the modified Griinwald-Letnikov fractional derivative can be efficiently
applied for edge detection.

Example 4.1. (Edge detection) Consider Figure 1(a) as an original image. Figure 1(b) shows
its Griinwald-Letnikov derivative defined by (2.2) and Figure 1(c) shows its modified Griinwald-
Letnikov derivative defined by (3.2). In both Figures 1(b,c), we put o« = 0.5. Also, for modified
Griinwald-Letnikov derivative, s = 255 and n = 0.5 selected. As it is seen the modified Grinwald-
Letnikov derivative shows only the edges of the main figure while Grinwald-Letnikov derivative

shows the whole of figure with low intensity.
V20
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A modification of Griinwald-Letnikov derivative in image processing

Figure 1: An original image (a), its Griinwald-Letnikov derivative (b) and its modified Griinwald-
Letnikov derivative (c), corresponding to Example 4.1.
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A spectral collocation method for solving the nonlinear
weakly singular FIPDE

MehranTaghipour, Hossein Aminikhah

Abstract. This work focuses on finding the numerical solution of the nonlinear time—fractional
partial integro—differential equation (FIPDE). For this purpose, we use the operational matrices
based on Pell polynomials to approximate fractional Caputo derivative, nonlinear, and integro—
differential terms, and by collocation points, we transform the problem to a system of nonlinear
equations. This nonlinear system can be solved by the fsolve command in Matlab.

1. Introduction

In the present work, we propose a numerical scheme to solve the nonlinear time—fractional partial
integro—differential equation with a weakly singular kernel

SDXu(z, t) + ulx, tug(z,t) = /t(t — 5)7 Mgy (z, 5)ds + g(x,t), z€[0,L], te[0,T], (1.1)
0

with initial and boundary conditions

w(0,t) = ¢1(t), u(L,t) = ¢o(t), 0<t <T, (1.2)
u(z,0) = ¢(x), 0<z<L,

where 0 < «,3 < 1, g(z,t) € C([0,L] x [0,T]), and ¢D§ is the Caputo fractional derivative
with respect to . This problem appears in the modeling of heat transfer materials with memory,
population dynamics and nuclear reaction theory.

To the best of the author’s knowledge, little work has been done on problem (1.1). For example,
Guo et al. [1] proposed a finite difference scheme for solving the problem (1.1)—(1.3). In the case of
a =1, Zheng et al. [2] described three semi—implicit compact finite difference schemes for problem
(1.1)—(1.3). This stimulates us to propose a numerical method for solving the problem (1.1)—(1.3).

2. Numerical method

We first provide some definitions.

Definition 2.1. The Caputo derivatives of order 0 < o < 1 of a suitably smooth function u(z,t)
on (0,b) x (0,T) is defined by

1 t
CDa _ —a /!

u(x,t) = ———— t—1) % (x, 7)dT. 2.1
0t(7) F(].Oé)/o( ) ()) ()
Keywords: Pell polynomials, Spectral collocation method, Caputo fractional derivative.

AMS Mathematical Subject Classification [2010]: 65M70, 65R10, 34K37.
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A spectral collocation method for solving FIPDE

Pell polynomials can be generated by the following recurrence relation:
Poio(x) =2xPyy1(z) + Py(z), Po(x) =0, Pi(z) =1 (2.2)

Using Pell polynomials, we can approximate a continuous function u(z) as follows:

N
u(x) ~ un(z) =Y cip1Piale) = CTPy (), (2.3)
=0
where
C =ler,¢2,...,en1)t, Py(z) = [Pi(x), Py(x),..., Py (z)])h. (2.4)

Analogously, we can express a continuous function u(zx,t) on [0, L] x [0,T] as follows:

N M
u(@, ) & una (@) =YY cip1 i Pt (@) P (t) = Py (@) WPy (1) = CTPyum(e,t),  (2.5)
i=0 j=0

where Wis a (N + 1) x (M + 1) matrix, C' and Pyas(z,t) are (N 4+ 1)(M + 1) x 1 vectors
C = [C11, €12y« -+ s CLM 41> COLs + + +y COM 15+ - -5 CNTs -+« CNIMA1) 5
P (2, t) = [Pri(z,t), ..., Pivgr (), Pygan(a,t), . .o, Pypana (2, 0)]7,

and P;(x,t) = P;(x)P;(t) are two variable Pell polynomials.
Also we can rewrite Py (x), Pas(t) in an equivalent forms as

Pn(z) = QT (z) (2.6)
P (t) = QT (1), (2.7)

where
T(x) = [1,357332, e xN]T, T(t) = [1,t,t2, . ,tM]T (2.8)

and matrices Qg and Q¢ are (N +1) x (n+1),(M + 1) x (n+ 1) have the formulas:

40,0 0 0 0 0 40,0 0 0 0 0
0 q1,1 0 0 0 0 q1,1 0 0 0
Q=20 0 @2 0 -+ 0 [ g =|®0 0 @2 0 - 0
gng 0 qguz -+ 0 qnn gna 0 guz - 0 qum
with — o
(¢i,) L2 if iz i = edd or i, j = even
qij) = 2
0, otherwise.

We approximate the Caputo fractional derivative as follows:

6 Dyu(e,t) = §Dfunm(z,t) = §DF Py (@) WPM(t) = Pn ()" W (DI Pur(t)),

= Py (x)TWQ:( §DPT(t))

_ L2 10 TG s, DM +1) area]’
—’PN(I')TWQI‘/ O’mtl ,m 2 ,..-,mt]\/f )

= Pn(2)" WQiMaQ; ' Par(t). 29
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Next, we approximate the nonlinear and integro—differential terms in equation (1.1).

M. Taghipour, H. Aminikhah

w(z, tug(x,t) ~ unpr (2, un e (z,1) = P (@) T WPy ()P ()T QT DTQIW Py (). (2.10)
For integro—differential term, we have

t t

/ (t — 8)° Luge(x, 8)ds ~ / (t — 8)P PR () TWPw (s)ds (2.11)
0 0
t

= [ 6= 9" HQuD @ P () WPy (5)ds

0

= Px@) QD QIW [ (1 9 QT (o)
0

L,s,...,sMT

t
— TAH-T T T [—
=Pn(2) Q" D7 Q; WQt/O T ds. (2.12)
On the other hand, the following relationship is valid:
boab T(k+ 1DT(B) pyp
/0 (t—l’)l‘ﬁdx_F(k—i-/B—o—l)t , 0<B<1, k=0,1,2,.... (2.13)
So, by substituting (2.13) into (2.12), we have
¢
/ (t — 8)P Mgy (2, t)ds ~= Py (2)TQ, TD"TQTW QST (t), (2.14)
0
where
5= diag( ) TALB) DM+ DR - ﬂ))
rB+1)’ rp+2""""7" IrB+M+1) )’
and

TP(t) = [t°, 1P, PP,
Hence, using relations (2.9),(2.10), and (2.14), we obtain the following equations:
Ri(z,t) = Pn(2)"WQeMaQ; ' Pas(t) + P (x) " WP (1) Pn (2)T QT D' QEW Py (1)

+Pn(2)TQ;TD"TQTWQSTP(t) = 0

R3(t) = Pn(0)"WPwn(t) — ¢1(t) = 0
Ry(t) = Pn(L)" WP (t) — pa(t) = 0
Now, we collocate equations (2.15) with the points z; = (22]%112) and t; = (221\2112) to obtain

Ry(zit;)~0 i=0,1,....N—2 j=01,...M—1,
)~ ,=0,1,...,N
RQ(mZ) O Z 07 ) ’ ’ (216)
Rg(tj)%() jZO,l,...,M—l,
Ry(tj) ~ 0 j=0,1,...,M—1.

In view of (2.16), we have a nonlinear system of equations. By solving this system, the unknown
matrix W can be determined. The numerical solution of the equations (1.1)—(1.3) can be obtained
by substituting the matrix W into the approximation (2.5).
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3. Numerical experiment

In this section, we use the Ly, error norm and Lo error norm

lle]]oo = max |u(w,tj) —unn (i, ty)], lell, = <h2(€7g‘n)2>
=0

1
2
0<i<N0<j<M ’
where u and uy s are the exact and approximate solutions of (1.1)—(1.3), respectively.

Example 3.1. Consider the equations (1.1)-(1.3) with the exact solution u(z,t) = t3sin(wx). The

source term is
63— 620 (B)t3+F

x,t) =

9a.1) <r(4 “a) " T(A+R)
Absolute errors for « = 0.5 and different values of 8 are reported in Table 1. Furthermore, the
norm of errors and CPU times are reported in Table 2.

it cos(7m:)> sin(rz).

Table 1:  Absolute errors for @ = 0.5 and different 5 for Example 3.1

(tit) a=05N=11 a=05N=11 a=05N=9 a=05N=9
B=01,M=4 B=03M—=4 B=07,M—=4 B=09,M—14

( ) 5.2665¢ — 11 7.5026e — 11 9.4157e —10  1.5935¢ — 09

( ) 8.8713¢— 10 7.0142¢ —10  1.7084¢ —09  4.5505¢ — 09

( ) 4.6062¢—09  3.6713¢—09  58173¢—08  1.3764e — 09

( ) 1.4766e — 08 1.2353¢ — 08 3.6620e —07  1.2902¢ — 07

(0.5,0.5)  3.6426e—08  3.1853¢— 08  1.2736e—06  6.7104c — 07

( )

( )

( )

( )

7.6243e — 08 6.9345¢ — 08 3.4065¢ — 06 2.2596e — 06
1.4258e — 07 1.3432e — 07 7.7630e — 06 6.0393e — 06
2.4555e — 07 2.3833e — 07 1.5689¢ — 05 1.3673e — 05
3.8165¢ — 07 3.7801e — 07 2.5814e — 05 2.4145e — 05
(1,1) 7.3344e — 15 1.1944e — 16 1.6793e — 15 2.1690e — 14

Table 2: Norm of errors for « = g = 0.5 and CPU time for Example 3.1
M=4N=6 M=4N=7 M=4N=8 M=4N=9 M=4N=10

llelloo llello llell llell lllello
1.7427e —03 17093 —03  3.7497e — 05  3.7046e — 05  5.5452¢ — 07
CPU  0.7787s 1.3037s 1.4066s 1.5607s 1.9541s
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Numerical solution of non-linear reaction-diffusion
equations using meshless radial point Hermite interpolation
method

Masoud Pendar, Kamal Shanazari

Abstract. In this work, we present a numerical method to solve two-dimensional non-linear
reaction-diffusion equations. Meshless and collocation techniques using radial basis functions (RBFs)
with the help of radial point Hermite interpolation (RPHI) method are employed to construct the
so called shape functions. Due to the use of meshless method, no mesh generation is required in
the spatial domain. Time discretization is performed using the finite difference method and Taylor
expansion is utilized for the non-linear part. The accuracy and efficiency of the method are exam-
ined by a numerical example. The numerical results show that this procedure is stable through the
time.

1. Introduction

The mesh-based methods such as finite element method, finite difference method and boundary
element method are still important tools in solving engineering problems and numerical analysis.
However, in the recent decades, meshless methods such as collocation method based on radial basis
functions (RBFs) have become alternatives for the numerical solutions of partial differential equa-
tions (PDEs) [2]. Hermite radial point interpolation method is a combination of point interpolation
and Hermite interpolation technique based on RBFs. In this method, in addition to the unknown
function, its derivative at the field nodes are considered as independent variables to construct the
shape functions. This provides a suitable tool for imposing the Neumann and Robin boundary
conditions which results in accurate numerical solutions. For more details see for example [3, 4]
and references therein. Besides the steady state equations, the radial point Hermite interpolation
method has been applied to time-dependent linear problems [3-5]. Many physical and engineer-
ing phenomena are modeled by time-dependent non-linear equations. In this work, we apply the
proposed method to the non-linear reaction-diffusion equations which is introduced in subsection
2.2.

2. Main Results

2.1. Meshless RPHI metod

In this section, we briefly introduce some important features and notations of meshless RPHI
method. For more details we refer to [5]. Suppose that u(x) is defined in a domain {2, repre-
sented by a set of field nodes. In the RPHI method, the approximate function at a point of interest

Keywords: Nonlinear reaction-diffusion equation, Meshless method, Radial basis function, Radial point Hermite
interpolation method.
AMS Mathematical Subject Classification [2010]: 35Q79, 49M30, 65N35.
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x contains the nodal values of u(x) and its derivatives at the field nodes as follows [5]:

= Dt + 32 25000+ 3 P S
j=1 j=1 J=1

= o7 (x)a + q)?;(x)a + @g(x)ay + PT(x)b,

non-linear reaction-diffusion equations using RPHI method

(2.1)

where , z and , y represent the partial derivatives with respect to « and y respectively, ¢;(x) denotes
an RBF, n is the number of basis functions, p;(x) is the augmented monomial which is built
using Pascal’s triangle, m is the number of polynomial basis functions. In this work, we choose
¢(r) = r*In(r), namely Thin plate spline (TPS), as the RBF. In order to determine the unknown
coefficients in (2.1), n field points are included in a support domain that is formed for the point of
interest at x. If we use the interpolation conditions for u(x) and its derivatives then, in a matrix
form, we can write

U=®&,a+ Ppa” + ®%a’ + P,b, U, =Pra+ ) %a" + o;%a” + Pb

2.2
U, = ®Ya + OY7a” + OWa¥ + PYb. 22)

There are m + 3n unknown coefficients and 3n equations in (2.2). Since TPS is a conditionally
positive definite RBF, we can add m equations as PnTla + ijlTax + P,%Tay = 0 and combine them
with (2.2) so that we obtain a (m + 3n) x (m + 3n) system of equations as

U o, @ O P,\ [a

B U HT  PrT (I)TTLTJ Pz a® B

Us=lu, | = | ol ot op ph||av| =% (23)
0 pr p:T pyT b

where G is a symmetric matrix and also invertible. Solving equations (2.3) we get as = G~U, and
inserting it in (2.1), we obtain u(x) = ®%(x)U,, where

() = (6100) - 6u(x) (%) 05 (%) BLx) .. 0h(x) (). dh(x)).  (24)

The first 3n functions in (2.4) are called radial point Hermite interpolation shape functions. For
the unknown function u(x) we can write

=3 ¢i(x)u; + > ¢F(x)uf + > ¢¥(x)ul. (2.5)
j=1 j=1 j=1

Let the total number of nodes covering the domain 2 is N, then we can replace n in (2.5) by
N. So we obtain the operational matrices for calculating the derivative of function w in (2.5) as

Ul = DQ(ES)U, U?SS) = DZ(,S)U. For more details see [5].

2.2. The nonlinear reaction-diffusion equation

We consider the following two-dimensional reaction-diffusion equation:

0
o(G7) + V2u+ Bg(u) = flx,t), x € QCR?, te(0,7]. (2.6)
with the Neumann boundary condition 8—“ = hi1(x,t), x € 90, t € (0,7] and the initial condition

u(x,0) = ha(x), x € QU IN. where V is the gradient differential operator, o and 8 are known
constants, g is the non-linear known function, n is the outward normal vector on the boundary, T’

denotes the total time, f, A1 and ho are known functions and the function u is unknown.
\VY
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2.3. Time discretization

We apply a Crank-Nicolson scheme on (2.6) as

un-‘rl —um
ot

where 0t denotes the time step size and u™ = u(x,t,) represents u at the time level n. Equation
(2.7) is a non-linear PDE for the unknown function u"(x). We need to solve the stationary PDE
(2.7) at time level n + 1. If we write the Taylor expansion of g(u"™1) = g(u(x,t, + dt)) around t,
and insert it in (2.7), then we have

st
2

o ) (V2 V) 4 2 Bg(u ) 4 g(u™)) = 1, (2.7

ot 1 ’
au™ + VR = Stau™ — §V2un — 6tBg(u”) — 5(575)25%@“) + (2.8)

This removes the non-linear term and, consequently, in a matrix form we can write
AU = B[U]™ + C,, (2.9)

where A and B are 3N x 3N matrices and C), is a vector of size 3N x 1. Using the initial condition
as the value of u at the time level n, we can evaluate the function u at the time level n + 1 by
solving the linear system (2.9). To impose the boundary conditions we apply the method introduced
in [4,5].

2.4. Numerical example

In this subsection, we examine the performance of the proposed method, by considering a numerical
example. To measure the accuracy, we use the maximum absolute error ||ulocc = max{|u.(x;) —
ug(xi)], 1<i< N}.

Example. We consider the following 2-D non-linear reaction-diffusion equation [1]:

0

9P+ cos(u(a,y,1)) = cose ¥ sin(@)sin(y), (x,y,0) € 0,7 x (0,7],
with the boundary and initial conditions as u;(0,y,t) = h1, uz(m,y,t) = —h; and uy(z,0,t) =
h2, wuy(z,m,t) = —hy where hyi(y,t) = e ?'sin(y), ha(x,t) = e * sin(x). The exact solution of

the above equation is given by u(z,y,t) = e 2 sin(x) sin(y). The error values at T = 2s for various

lengths of h are presented in Table 1. Also, the order of convergence in space and in time are
presented in the columns denoted by O.C.(h) and O.C.(t) respectively.

Table 1:  Error values in approximating u, u, and u, for various h and order of convergence in
space and time.

=32, h e 0C.() [0l Uyl

% 5.4e — 3 — 3.8e — 2 3.8e — 2

z 2.9¢ — 3 0.89 37e—3  3.7e—3

z 1.9¢ — 4 3.93 27e—4  2Te—4

I—O 1.5e —5 3.66 1.9e — 5 1.9e — 5
h=2, s) 0.C.(t)

0.5 1.6e — 3 — 2.8e — 3 3.8e — 2

1 T.4e — 4 1.1 1.2e — 3 9.5¢ — 3

2 1.9e — 4 1.96 3.1le—4 1.9e — 4

4 7.8 — 6 4.69 9.6e — 6 7.4e — 5

8 4.9¢ — 9 10.63 5le—9  48c—8
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Conclusions

We applied the RPHI method to a non-linear reaction-diffusion equation. Time discretization was
performed by Crank-Nicholson method. For the non-linear part, a Taylor expansion method with
respect to time was used. The results showed that this method is stable and by increasing the
number of nodes the approximation error can be reduced.
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A novel shifted Jacobi operational matrix method: An
application for solving nonlinear multi-term fractional
variable-order differential equations

Hamidreza Khodabandehlo, Elyas Shivanian

Abstract. This paper presents the generalized multi-term fractional variable-order differential
equations. In this artticle, a novel shifted Jacobi operational matrix technique is introdused for
solving a class of these equations via reducing the main problem to an algebric system of equations
that can be solved numerically. The suggested technique is successfully developed for the aforemen-
tioned problem. Comprehensive numerical expriments are presented to demonstrate the efficiency,
generality, accuracy of proposed scheme and the flexibility of this method. Comparing the results
of the current method (NSJOM) with the exact solution, indicating the efficiency and validity of
this method. Note that the procedure is easy to implement and this technique will be considered
as a generalization of many numerical schemes.

1. Introduction

Fractional calculus analysis and applications are an active and rapidly growing area for research in
the last three decades. At present, due to their extensive applications in diverse scientific disciplines,
such as physics, regular changes in thermodynamics, etc., it has become an important tool ( [1] and
its resources). The increasing development of appropriate and efficient method to solve F'DFEs has
aroused more interest of reserchers in this field. In recent years, many attempts have been made
to solve the FDESs, we reffer the interested reader to [3-5] and etc. In this paper, the our aim is
to generalize the orthogonal polynomials in the base of solution. In fact, we present a new shifted
Jacobi operational matrix for the fractional derivative to solve the nonlinear multi-term variable
order F'DE's which as follow:

> D Ww(t) = F(t,w(t), D" Dw(t), D Dw(t), ..., D Dw(t)), (1.1)
j=1

< T,w®(0) = 0,i = 0,1,2,....,n — 1,n € N, where o; € R(j = 1,2,..,n),0 < T.and
D w(t)(5 = 1,2,...,n) are the Caputo’s derivative of variable-order fractional.

2. Fundamentals and preliminaries

This arrticle is based on Caputo definition because ,as well as know, only the caputo sense has the
same form as integer-order differential equations in initial conditions.

Keywords: Shifted Jacobi Operational Matrix technique, Multi-term variable-order FDE..
AMS Mathematical Subject Classification [2010]: 13F55, 05E40, 05C65.
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Definition 2.1. The Caputo derivative with fractional variable-order n(t) for w(t) € C™[0,T] are
given respectively as [2]:

bl W) w(0) —w(07)
DOu(t) = e | (T Chals v

Definition 2.2. Denote P( ”8)( t);ae > —1,5 > —1 as the n—th order Shifted Jacobi polynomial in
t defined on [0,77], and [2]:

A novel shifted Jacobi operational matrix method

n

(@B) 1y _ N/ _q1yn—k Na+n+ DN a+B8+k+n+1) k
i) =2 (1) Dla+B+n+1)(a+1+k)D(k+1)(n—k+1)Tk

k=0

2.1. Function approximation by shifted Jacobi polynomials

The function w(t), square integrable with respect to wr} o5 )( t) in [0,T], can be expanded as the

following expression [2,5]:

00 T

w(t) =Y aP(t), 0 = al AP (Dw(t)dt,i = 0,1, (2.1)
, R Jo
= 7]

So, we can estimate the approximate solution by taking (N + 1)-terms of the series in Eq. (2.1) and
we will have

wit Z aiPy) (t) = AT®r N (t), (2.2)

where A = [ag, a1, ...,ay]T, and &7 n(t) = [P%O‘dﬁ) (t),P}O‘l’B) (t),... ,P:(FO‘]’\?) (t)]”. Here, we suppose
that S(t) = [1,¢,t2,3,...,tV]T. By equation (2.2), the vector &7 y(t) can be presented as &7 (t) =
Ba,)S(t), where B, g is a square matrix of order (N + 1) x (N + 1). Hence, we get

S(t) = B(;{B)@T,N(t). (2.3)

3. Shifted Jacobi Polynomials Operational Matrix (SJOM)
At first, D" &7 v (t), (i = 1,2,...,n) can be deduced as the following: since &7 y(t) = Ba,3)S(1),
then we have

D&y n(t) = DD (B, 5S(t) = Blagy D" V1, t,... N7 i=1,2,...,n. (3.1)
Then
r(2)tt-—m() (N + 1)tV-m(®) -
L'(2 —mi(t)) ’.(; DN+ 1= mi(t))

D@y (8) = Blagy D" (S(1)) = Blap)l0,

[0 0 0
(2t ) i}

v 0 .. 0 1
['(2 = mi(t)) p— ;
3t~ 2 (3.2)
_ 2 t
=Bag | 0 0 NEEEA0) 0 |
. . . : . i
=i L .
0 0 0 (Nt

i e
= BagQi®)S®),i=1,2,....n
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Table 1:  Absolute errors of w(t) with N =3 and T'=1 for Ex.1 by NSJOM.
t€[0,7] a=1,=1 a=0,=0 [[a=05,3=05
0 8.4655 x 10716 || 6.9389 x 10717 || 1.8041 x 10~16
0.2 1.0339 x 107° || 6.9389 x 1078 || 2.0122 x 10716
0.4 1.0963 x 1071° || 8.3267 x 10717 || 1.9428 x 10716
0.6 1.0825 x 1071° || 1.3878 x 10716 || 1.9428 x 10716
0.8 9.7144 x 10716 || 1.6653 x 10716 || 1.1102 x 10716
1.0 9.0206 x 10716 || 1.1102 x 10716 || 1.5265 x 1016
CPU time 0.3432s 0.2028s 0.3276s

Using Eq.(2.3), then D"(0®7 n(t) = B Qi(t) B, 5 ®rn(t),i = 1,2,...,n. The operational
matrix of D"M®p n (1), (i = 1,2,...,n.) is B(aﬁ)Qi(t)B(_alﬁ).
order fractional of the approximated function that obtained in Eq. (2.2). Finally, we use ¢;(j =

0,1,2,...,m.) wher they are the roots of P}arfll(t). Then Eq. (1.1) can be converted into the
following algebraic system

Now, we can estimate the multi-

> ai(AT B p)Qi(t)) B!y ®ron(ty)) =
=1
F(tj, AT0rn(t;), (AT Bla,)Q1(t)) B g PN (1)) (AT Ba,5)Q2(t)) B gy @ N (1)) oo
(ATB(a,,B)Qn(tj)B(_oiﬂ)@T,N(tj)% AT(I)TJV(tj — T)),j = 0, 1, 2, e,

So, the system in Eq. (3.3) can be solved numerically for determining the unknwon vector A.
Therefore, the numerical solution that presented in Eq. (2.2) can be obtained.

(3.3)

4. Numerical experinces

Example 4.1. Consider the following multi-order fractional DFE

DOy (t) + DOy (t) + DB O (t) — w(t) — 2w(t) =

F(4>w(t)3*771(t) 1"(3>w(t)27771(t) F(4)w(t)3*772(t)

w(t)2—m2@)
( ) - L

I'(4 —m(t)) I'(3 —m(t)) I'(4 = na2(t)) I'(3 = ma2(t))
w 3—n3(t) w 2-n3(t)
T p@ ~ Ty )~ =)~ =P =0
Note that w(t) = t3 — t? is the exact solution and 0 < t < T, T = 1,n(t) = %,?72(75) = % and

2t
n3(t) = T The absolute errors (at some nodal points) of this method, also the CPU time needed

for our method for different values of @ and (3 are shown in Table. (1). From this Table, it is
observed that the numerical results which obtained via our technique, are much closer to the true
solution.
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A difference scheme for fourth—order fractional partial
integro—differential equation

Mehran Taghipour, Hossein Aminikhah

Abstract. This work presents a difference scheme by considering cubic B—spline Quasi—interpolation
for the numerical solution of a fourth—order time—fractional integro—differential equation with a
weakly singular kernel. The fractional derivative of the mentioned equation has been described in
the Caputo sense. Time fractional derivative is approximated by a scheme of order O(72~%) and the
Riemann—Liouville fractional integral term is discretized by the fractional trapezoidal formula. The
spatial second derivative has been approximated using the second derivative of the cubic B—spline
Quasi—interpolation. The discrete scheme leads to the solution of a system of linear equations.

1. Introduction

In this work, we consider the fourth-order time—fractional integro—differential equation (PIDE) with
a weakly singular kernel as follows [1]:

oD u(x,t) — uge(,t) — TP gy (,) + Uppee(x,1) = f(z,1), (x,1) € Q,
u(r,0) =u'(z), 0<ax<L, (1.1)
U(O’t) :u(L?t):ufEfE(O’t) ZUII(Lvt) :Oa O<t§T’

where Q = (0,L) x (0,T], 0 < o, 3 < 1, f(z,t) is source term and u°(z) is given smooth function.
In fact, problem (1.1) is equivalent to

cDg yu(z,t) — v(z,t) —IPu(z,t) + vge(x,t) = f(z,t), (z,t) € Q,

v(z,t) = ugy(z,t), 0<ax<L, 0<t<T,

(1.2)
u(r,0) =u'(z), 0<x<L,
u(0,t) =u(L,t) =v(0,t) =v(L,t) =0, 0<t<T.
In (1.2), ¢D§; is fractional derivative operator in caputo sense and 75 is defined as follows
1 t
TPy (, 1) = / (t — ) gy (x, s)ds, t >0, (1.3)
() Jo

where T'(.) is the Gamma function. Equation (1.1), can be found in the modeling of floor systems,
window glasses, airplane wings, and bridge slabs.

Keywords: B-spline Quasi—interpolation, Time—fractional partial integro—differential equation, Weakly singular ker-
nel.
AMS Mathematical Subject Classification [2010]: 65M12, 65M70, 65R10, 34K37.
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2. Numerical method

fourth—order fractional partial integro—differential equation

The domain is d1v1ded into a uniform grid of mesh points (x;,t;) with z; = jh, h = M, 0<j<M
and tg = k7, 7= N, 0 < k < N. The values of the function u at the grid points are denoted u(z;, t)
and U, k is the approximate solution at the point (x4, tg,).

Definition 2.1. The Caputo derivatives of order a are defined by

DS, f(x) = F(nl_ 5 /a ’ - _f:)(j)nﬂdt, a<a. (2.1)

Lemma 2.2. (Ly approzimation) Let o € (0,1) and u(.,t) € C([0,T]) then the following approxi-
mation formula holds

e k—1
g
CDS‘,tu(x, tk) = m [bou(x, tk) — (bk,j,1 A bk,j)u(x, tj) o bk,1U($, to)] + R, (2.2)
j=1
in which
b= [+ =179, 0<I<k-—1, (2.3)
|R| < Cr*@ (2.4)

Lemma 2.3. Let § € (0,1) and u(.,t) is suitably smooth on (0,T) then for the T there holds
that

k
IO u(z, ) = ajpula,t;) + O(r?), (2.5)
j=0
where
5 (k—1)P —(k—1-B)KP, j=0,
ajp =3 (k=7 + D 1 (k—1-5) -2k -, 1<j<k-1,
k= Ty | I 7) (k—7) sjsh
, j=k.
Definition 2.4. Suppose for a nonnegative integer p and some integer j that {;_, 1 <&, < --- <

§j are p+ 2 real numbers taken from a knot sequence §. The j-th B-spline Bj ,¢ : R — R of degree
p is identically zero if {;_,—1 = {; and otherwise defined recursively by

§—x
& — &i-p

Biyg{(.%’) _ {17 Zf HARS [éi—lagi)u

0, otherwise.

x_éj —p—1

Bj,p,ﬁ( T) = m Bj,p—l,s(ﬂﬂ)a (2.6)

Bj_1p-1¢(x) +

starting with

Let A\; be a linear functional defined on Cla, b] that can be computed from values of f at some
set of points in [a,b]. We have the following definition.

Definition 2.5. [2] A formula of the form

n-+p

Qpf(x) =D (A\f)Bjpe(), (2.7)

=1

is called a B—spline quasi—interpolation formula of degree p.
VAo
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Suppose a = xg < -+ < x, = b are equally spaced points in the interval [a,b]. We have the
following theorem.

M. Taghipour, H. Aminikhah

Theorem 2.6. [2] Given a function f defined on [a,b], let

( )’ Jj=1
18 (7f(1'0) +18f(w1) — 9f (w2) + 2f(x3)), Jj=2,
ANif = a(—f(mj-3) +8f(zj-2) — fzj-1)), 3<ji<n+1, (2.8)
%(2f($n 3) = 9f(xn—2) + 18f(xn_1) + 7f(2n)), j=n+2,
f(zn), j=n+3.

Then (2.7) defines a linear operator mapping C|a, b] into the space of splines spanned by the B-splines
with Qps = s for all cubic polynomials s.

For approximate derivatives of f by derivatives of Q3f up to the order A3, we can evaluate the

17

value of f"and f” at z; by (Qsf)'(z) = Z(A F)Bjpe(@) (z) and (Q3/)" (x) = Z(/\ F)Bipg(x) (z).

j=1 =
We set Y = (fo, f1,..., fn)', Y = (fo,fl,...,fll)T and Y = (f7, 1,...,f}’{) where f]/ =
(Q3f)l(xj)’ Jj=1,...,nand f;/ = (Q3f)"(3?j), j=1,...,n. The first and the second derivatives of
Qs(f) are calculated as

n+3

£ =Y "(N\if)Bjpe(x)

J=1

/

(), 7=0,1,...,n, (2.9)

n+3

f; =Y _(Nf)Bjpela)

j=1

1

(x), j=0,1,...,n. (2.10)

Therefore, we can display the approximation of f’ and f” in the following matrix form

! 1 17 1
Y =-D1Y, Y =-—=DyY, 2.11
h 14, h2 21, ( )

where Dy, Dy € RHD*(+1) gre pentadiagonal matrices.
Considering (1.2) at the point (x;,t), one has

D yu(wi, tr) — v(wi, tr) — TOv(24,t1) 4 vaa (@, te) = f(@i, tr),

(2.12)
U(l’i,tk) = um(:vi,tk), 1 S ) S M — 1, 1 S k S N.
Using (2.2),(2.5) and (2.9),(2.10),(2.12) can be approximated by
L k-1
7[b0u (bk] 1—bk j)u —bk 1U —V; —Zajkv +Z g f Z (Rl)f,
I'2-—a) = h
(2.13)
M g2
v =" Sk (Ry)f, 1<i<M -1, 1<E<N, (2.14)

where |(R1)F| < C(727® + h?) and |(R2)¥| < Ch% So that in each time step we encounter the
following system of linear equations

AU = F*, (2.15)
VAN
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3. Numerical experiment

fourth—order fractional partial integro—differential equation

In this section, we use the following error norm

1
2

M
le(r, h)|| = [|eV] = [ Az ) (eM)? ),
(a0 37°)

where e;? = u(xj,ty) — Uj’?.

Example 3.1. Consider the equations (1.1)-(1.3) with the exact solution u(z,t) = t**#sin(7z).
The source term is

r 1 T 1

f(x,t)z( (@+B+1), o mTa+B+1)

rB+1) (26 +1)

In Table 1, we record the absolute errors and convergence orders in spatial direction for different

P+ 72+ 7T4> t9H8 sin(nz).

Table 1: L2-norm errors and order of convergence for o = 0.1,0.3,0.5 and g = 0.1,0.15,0.45 for
Example 3.1

h 7 a=0.1 =01 71 a=0.3 6=015 T a=0.5 8 =0.45
i [ rm(rh) i3 [e™] r(r,h) 15 e 1] ri(7,h)
% 9.6233e-03 9.9334¢-03 1.0321e-02
% 2.6307e-03  1.8711 2.6851e-03  1.8873 2.7430e-03  1.9116
ﬁ 6.4975e-04  2.0175 6.6955e-04  2.0037 6.7759e-04  2.0173
% 1.5008¢-04 2.1141 1.6518e-04  2.0191 1.6533e-04  2.0350
1§%0 2.5577e-05  2.5528 4.0002e-05  2.0459 3.8777e-05  2.0921
50 5.4572e-06  2.2286 8.8637e-06  2.1741 7.3685¢-06  2.3958

values of a and S . We have used the following formula to calculate the convergence rate:

C etr2m)]
rilr.h) = log, ( le(r. )] >
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A meshless method for solving the fractional Schnakenberg
model used to biological pattern formation

Marzieh Raei

Abstract. This paper develops a meshless collocation technique based on the radial basis functions
to simulate a famous two-dimensional reaction-diffusion system so-called Schnakenberg model with
Riesz space fractional derivatives in developmental biology. The Schnakenberg system is one of the
popular Turing pattern formations applied in biological pattern formation.

1. Introduction

The reaction-diffusion system has the beneficial property that causes generate pattern formation in
biology. Schnakenberg proposed one of the interesting reaction-diffusion models in 1979 based on the
hypothetical mechanism consisting of trimolecular autocatalytic reactions [1]. In this work, a two-
dimensional reaction-diffusion Schnakenberg model by replacing the second order space derivatives
with Riesz fractional derivative is specifically investigated as follows

Oulpnt) — Dulet) 4 Duewl) 4 (o (g, t) +uP(z,y, Doz, t), (2,y.0) € Qx (0,T),
Ov(z,y,t) 0" v (x,y,t) 8‘1/’11(1 y,t) 2 (11)
Ty’ = dv( 6\m|7;” + 3|y‘)i/7 ) +7(5 —u (x,y,t)v(%y,t)), (x,y,t) € Qx (OvT)a
with boundary and initial conditions
u(z,y,t) =0, v(x,y,t)=0, (x,y,t)e€ I x(0,T), (1.2)
u(z,y,0) =u’(z,y), v(z,y,0)=2"(z,y), (z,y)e Q, (1.3)

where u(x,y,t) and v(z,y,t) are the two chemical concentrations, a and f are positive constants,
~ is the positive scale parameter determined adequate to the dimensional of the computational
domain, and d, is the positive diffusion coefficient.

Moreover 0% and 9w

oHu My . . . .

%A g u <

. DLl and_aly\f‘ are Riesz fractional derivatives of order 1 < ,u 2 anq RIER an. ol
are Riesz fractional derivatives of order 1 < v < 2. In general form, the Riesz fractional derivative

of order n — 1 < o < n in z direction is defined on [a, b] as follows

[

. )= [.D%u(z,y,t) +u Dlu(z,y,t 1.4
8|$|0u(x7y7 ) 2COS%[ mU(l' Yy )+ bu(l. Yy )] ( )

The left and right Riemann-Liouville fractional derivatives in above formula can be defined as follows

__ 1 o (n,y:t)
aDgu(x,y,t) - F(TL—O’) oxn fal; (x_u?;?oy_?_i_l (1 5)
_ _ -1 o Yot ’
anu(x,y,t) — I'(n—0o) Oz fm (n—ilx;?oy—n—‘rl'

Keywords: Schnakenberg model, biological pattern formation, Riesz fractional derivative, meshless method, radial
basis functions.

AMS Mathematical Subject Classification [2010]: 35K99, 34M99.
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Meshless method for solving the space fractional Schnakenberg model

In this work, we apply an implicit finite difference procedure for time discretization. Then in the
time-independent system, to approximate the Riesz fractional derivatives, the Griinwald-Letnikov
formula is employed. The numerical results verify the accuracy and efliciency of the suggested
numerical method.

Riemann-Liouville fractional derivatives as follows

2. Numerical Procedure

In this section, first, an implicit finite difference formulation is suggested to discrete the problem
(1.1) in time direction For this purpose, the time interval [0, 7] is uniformly decomposed into M
sub-intervals U] Y[td, 4911 where t/ = j7, j = 0,--- , M and 7 = T/M is time step size. The time
integer derivative can be discretized at two sequentlal time levels n 4+ 1 and n as follows

Ou(x, t" 1)+l — Ov(x, 1ty pntl —gn

5 = . + O(7), ét = x + O(7), (2.1)

Then by substituting t = "1 in the system (1.1) and using the relations (2.1), the following relation
is obtained:

(2.2)

v n+l 8uvn+l

(1 + my)untt — 7(732‘7’;]:1 + 765?5;:1) = 7ya + TyGP T 4 4,
v —1dy (B + Gi) = T8 — TG 4,

where u™ = u(x,y,t") and v" = v(z,y,t") and G"! = u?(x,y, " T v(z, y, "),
Moreover, the first-order shifted Griinwald-Letnikov operators could be applied to approximate
the left and right Riemann-Liouville fractional derivatives (1.5). Therefore, the space interval [a, ]
should uniformly decompose into N sub-intervals UiV: ol@i, zit1] where x; = a4+ ihy, i =0,--- | N
and hy = (b — a)/N. Thus by substituting x = z; in the time-independent relations (2.2), we

have [2]
oDfu(eiy, t") = 1 S0 wfu(@ioger, y, 1) + O(ha),

oD u(z;,y, t") = }Lla' kN:()lek (Tith—1,y,t" ") + O(hy).

(2.3)

Furthermore, the space Riesz fractional could approximate by using the discritized formulae (2.3) in
x and y directions for fractional orders p and v. Therefore, by placing the shifted Griinwald-Letnikov
approximation in the time-independent relations (2.2) , the resulting finite difference equations are
obtained as follows

n+1 i+1  u o ntl —i+1 lt n+1 i+1 n+1
(1 +77)y; T<C (Do wrwi” k+1j+zk o wrtith g 5) + Oyl wiuli g

PTG ) = et Gl =120 N

(2.4)
n+1 i+1 n4+1 N— 1+1 n4+1 i+1 n+1
Uy, g Td (C ( k= Owkul k+1,5 + Z ku1+k 1 j) + Cyl’( k= Owk:u] i—k+1
N— z—‘,—l +1 1 .
+Z ;lz+k 1)>_T76_T7Gn+ +U'Lj) J:1a27"'aNa
n+l _  n+l(,. .. — 1 _ 1 _ 1 —
where i = u (xi,y5), Cop = S cos(E) Cyu = T cos(ZE) Cp = 2R cos(7T) and Cy, =

Now, we could perform the collocation meshless method based on radial basis function on the
discritized relations (2.6) to approximate the numerical solutions u(x,y,t) and v(x,y,t). Therefore,
we briefly review the meshless collocation method based on RBFs. In this method, the numerical

solution of governing equations can be approximated by a linear combination of the RBFs as follows
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linear combination of the particular solutions of the given RBFs as follow:
u(x) ~i(x) = A®i(x), x€Q, (2.5)

where ®;(x) = ||x — x;|| and {\;} are the undetermined coefficients. Also, in the current work, ®
is thin plate spline (TPS) radial basis function. By applying the collocation method for discritized
equations (2.6) and boundary conditions (1.2), the following linear system of equations is obtained

N i+1 N N—i+1 N
[ +77) 202, ‘I’l(ﬁ%yj)_T(C (Chso Wi 2oimt Pu(@ioka1,95) + 250 Wi 2oy Pu(@ivk-1,7;)
i+1 N— 7,+1 N m
O S, Wl i) + X0 zzl_lcbz(wj,yi+k1>)}xl
=7ya+ 7Ty G s, 0, =1,2,..., Ny,
N i+1 W N— 2+1 v N
0 ‘I’l(l“iayj)i,j—Tdv(Cmv( o WE o Ru(@iokg1,97) T opso Wk Yoy Rul@ipk-1,7;)
i+1 v N N— 7, 1 N )
uv( k+0 Wi 2= 1(1’(%:% k+1)+z " kZl—lq)l(xjayi-‘rk—l))])‘;
=78 — TG "t 4o, 0,5 =1,2,..., N,

Zl]ilq)l(xiayj)i7j)\l _07 Za] _N’+1a27"'aNa
Sy i@ yy)ig N =0, 4,5 = Ni+1,2,...,N.

(2.6)
Therefore, the numerical solutions could achieve by solving the 2IN x 2N linear system of equations.

3. Numerical results

As a benchmark problem, the Schnakenberg Model (1.1) on unit square 2 = (0,1)? with Dirichlet
boundary conditions (1.2) for both v and v variables. Moreover, The initial conditions are considered
by taking small random perturbations around the steady-state (us,vs) given by us = a + 8 and
Vg = ﬁ To investigate the convergence of the presented numerical method, the following error
estimation is considered:
Ezlj = [Jur — u2rfoo-

The CPU time and error estimation concerning time step size 7 at T = 3 by letting o = 0.1, 5 = 0.9,
v = 660, and d, = 8.6676 for the space fractional derivative orders y = v = 1.5 is presented in
Figure 1. The time evolution of the activator concentration u with fix values of the parameters for
different time levels are demonstrated in Figure 2.

10-12

CPU time

—m—3,200

5.5 * . * . : 100

x10°?

Figure 1: Error estimation and CPU time with respect to time step size 7.
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Meshless method for solving the space fractional Schnakenberg model
1 1 1 1
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Figure 2: The contour plot of activator concentration u at different time levels (a) t = 0, (b) T = 0.05, (c)
T =0.15, and (d) T = 0.25.
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The direct meshless local Petrove Galerkin method for
solving equations with distributed order derivatives

Ali Habibirad, Hadis Azin, Esmail Hesameddini

Abstract. In this work, a hybrid method is developed based on the generalized Moving least square
(GMLS) approximation and finite difference method for solving this distributed order equation. To
show the accuracy and efficiency of the proposed method we discuss an example.

1. Introduction

Equations with distributed order derivatives are a branch of fractional calculus that has recently
expanded due to its applications. These equations have many applications for modeling complex
systems. To see more properties and numerical solutions methods about equations with distributed
order derivatives see [1] and references therein. In this work, we study the following distributed
order time-fractional equation

1
/ w(a)Diu(x, t)da = Au(x,t) + u(x,t) + f(x,1), x € Q C R? 0<t<T, (1.1)
0
subject to the initial and boundary conditions

u(x,0) = up(x),
{ (x.t (1.2)

In which Dfu(x,t) shows the Caputo fractional derivative of u(x,t) which is given by

o \o 1 Pou(x,r) dr
Difu(x,t) = T —a) /0 o =1 0<a<l, (1.3)

Also, the weight function w(«) has the following conditions
1
w(a) >0, 0< / w(a)da < oo. (1.4)
0

One of the numerical methods that has been much considered by researchers in recent years is
meshless methods. Due to their high flexibility, these methods have the ability to solve problems
in regular and irregular domains. And unlike mesh-based methods, they often use nodes instead
of meshing to solve problems. This saves less time for the procedure. The beginning of these

Keywords: Distributed order fractional derivative, Time-fractional reaction diffusion equation, Caputo fractional
derivative.

AMS Mathematical Subject Classification [2010]: 65M12,65M60, 34A45.
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DMLPG method for solving equations

methods can be considered as the smooth particle hydrodynamics method. One of the meshless
schemes is the meshless local Petrov-Galerkin method (MLPG), which was invented in 1998 by
Atluri and Zhu [2]. The classic basis of this method is the moving least-squares approximation. By
changing the test function in this method, six different types are known which are named MLPGI,
MLPG2, MLPG3, MLPG4, MLPG5, and MLPG6. In these methods, numerical calculations are
traditionally performed on MLS shape functions and their derivatives. In this case, the complexity
of the shape functions and the lack of a closed-form of them require a large number of points (and
shape functions) for them to obtain accurate results. Therefore, MLS subroutines must be recalled
frequently, leading to high computational costs. To overcome this problem, Mirzaei and Schaback [3]
used the generalized MLS method and thus invented the direct meshless local Petrov-Galerkin
method (DMLPG) method. In the present paper, we use the DMLPG approach to discretization
the Eq (1.1) in space variables. At first, we introduce the GMLS method in section 2, the proposed
method is discussed in sec 3, to show the ability of the method one example is given in section 4,
and finally, a short conclusion is given in section 5.

2. The GMLS method

Suppose function u(x) is defined in the global bounded domain Q C R? with boundary 9. Also
assume {x;}I" ; are randomly distributed in the global domain and Q is a subdomain for point xy.
In the classical MLS method, the following expression u/(x) is used to approximate function u(x)
as

uM(x) = pT (x)a(x), Vx € Q, (2.1)

in which p?'(x) = [p1(x), p2(X), ..., pm(x)] is a vector matrix of complete monomial basis. As stated
in [4], if we consider the sub-domains in the form of a circle and also assume that only N points are
around the point x, in other words, the weight function is not zero in these N points, we get the

following expression:
N

u'(x) =a" (Ju=">"a;(x)u(x)), (2.2)

Jj=1

in which a”(x) is the shape functions vector of MLS that defined as follows
a’(x) = p’(x) (PTWP) " PTW. (2.3)

Also, two matrices P and W are defined as

pi(x1) p2(x1) ... pm(x1) wi(x) 0 ... 0
p_ [Pie) p2(2) oo pmlx) Cow=| 0 w0 . (24)
p1(xn)  pa(xw) Pm(XN) Nxm 0 0 - wn(x) NxN

Let A(u) be a sufficiently smooth function. In the MLS scheme this function approximate by the
following form of shape functions

n

Aw) = A(@) = 3 May)ulxy). (2.5)

Jj=1

Given this relationship, it is obvious that the act of A(u) goes back to the shape functions a; and

requires a lot of calculations to calculate the proper accuracy, and if function A\(u) is complex, this
YAA
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becomes more difficult. In GMLS approach, function A(u) is approximated directly by the nodal
values {u(x;)}I*; without using the shape functions. This approximation is as follows

W) =3 a;(\ulx): (2.6)
j=1

The GMLS estimation A(@) can be calculated as A(4) = A(p*) where p* € P = span{p1,p2,...,Pm},
is the minimizer of the weighted least-squares

A. Habibirad, H. Azin, E. Hesameddini

> " wi () [p(x;) — ulx;)]%, (2.7)
j=1

across all p € P. The optimal solution a*(\) € R” can be demonstrated as
a*(NT = A(p") (PTWP) ™ PTW, (2.8)
in which the matrices P and W are introduce in (2.4) and

AP") = [AP1), - A(py,)] € R™ (2.9)

In this work, we use the following weight function as

652 4857 _ 35t s <
wi(X)_{l Osi+8s7 — 35, si<l, (2.10)

0, s; > 1,
in which s; = =l le and r; is the size of support in the weight function. In the GMLS the functional
A doesn’t act on shape functions, it indicates that integrations portray just over polynomials.

3. The proposed method

To construct the finite difference technique for the distributed order fractional in Eq. (1.1), let

T

7 = — be the step size of time and define ¢t,, = n7 , n = 0,1,2,--- ,n;. The Caputo fractional
s

derivative Dj7u(x,t) in Eq. (1.1) is approximated by the L2 — 1, method [1] as follows (¢ = 0.5)

n — v
Lay -
P tnse) = zz—% I'(2 - ay) n+ °) (w(%, tn141) — w(x, 1)) + O(rOme), (3.1)
(n+1,a5) . . .
where ¢, is introduced in [1]. Also, we use

u(x,t) = % (W, 1) + 1, 1)) - (3.2)

Substituting (3.1) and (3.2) in (1.1), results in

1, ,. . 1, -
Zd (n+1) < X, bp— l+1) (thn—l)> - iA(unJrl + Un) + 5 (UnJrl + Un) = fn+%v (33)
M —aj
where dl(nH) => #(Ijj (a])c§n+1 “9) and U, = u(x,t,) is an approximation of the exact
j=1 2F(2 — OZ])

solution wu(x,t,). Now let {x;}_; be the arbitrary nodes and scattered in global domain Q. Also
VA4
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Figure 1: Global domain.

we assume a subdomain around every points. These subdomains can be any geometric shape and
they usually assume a circle in the two-dimensional case. DMLPG2 is used to the strong form (3.3)
directly by using the following approximations

/\1’]€ = ﬂ(Xk) = ;\Lk(ﬂ) = Z al,j&(xj) )\2,k = Aﬁ(Xk) = 5\27]@(11) = ZCLQJ’EL(X]') (3.4)
j=1 Jj=1

applying Eq (2.8) we get
(a, )" = Aw(®?) (PTWP) " PTW,  i=1,2, (3.5)

in which
AMk(P) = [P1(%k)s - pm(Xk)] Aok(P) = [Ap1(Xk), - - - s Apm (Xk)]- (3.6)

To obtain the Dirichlet boundary conditions we used the relation (3.4).

4. Numerical results

In this section, a numerical example is studied to examine the accuracy of the presented method.
To compute the accuracy of results are used by absolute error as

Loo = max |i; — ujl, (4.1)

Mz

(. 7) — i, (x. T))2

M

1

.
Il

Ly = (/Q(U(X,T) —ant(x,T))2dx)é, RMS =

where u and @ are the exact solution and proposed numerical solution, respectively.

Example 4.1. We will check the following model
1
/ w(a)Diu(x, t)do — Au(x,t) + u(x,t) = f(x,1), x = (z,y) € Q. (4.2)
0

Here, the analytical solution is u(x,y,t) = t?sin(z)sin(y) and w(a) = I'(3 — a). We extract the

initial condition, Dirichlet boundary conditions and the source term f from the exact solution. The
V4o
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Table 1: The Ls, Lo, and RM S errors and related convergence orders for Example 4.1 over § with different

final times.
T Lo Lo RMS
1 8.8730E —06 1.0072FE —06 4.1015E — 07
2 3.9574FE — 06 4.4920F — 07 1.8243E — 07
3 2.2308E —06 2.5322F —07 1.0312FE — 07
4 1.4299F — 06 1.6201E —07 6.6097FE — 08
5 9.9010E — 07 1.1204F —07 4.5901F — 08

global domain is irregular shape 2 shown in Figure 1. The boundary of a global domain has the
following parametric formula

{(m,y) €R?: 2 =rcos(d),y =rsin(d), 60 ¢c]0,2x], r= 0.5\/(005(39) ++/1.1— sin(39)2} . (4.3)

The number of interiors and boundary points are 342 and 126 respectively. Table 1 demonstrates the
numerical results for Example 4.1 have good accuracy in comparison with the analytical solution.

5. Conclusion

In this paper, a local collocation meshless scheme was used for the numerical solution of distributed
order time-fractional reaction-diffusion equation. The GMLS approximation and L2 — 1, method
with the Gauss-Legendre numerical integration were employed to deal with this problem. One
example was studied and it showed the accuracy and capability of the presented technique for
solving such problems.
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Exponential basis functions with three shape parameters

Jamshid Saeidian, Bahareh Nouri

Abstract. We study a modification of the model presented in [3] through adding a suitable shape
parameter. The new curves have most of the features of the cubic Bézier curves with the advantage
that the new parameter enables us to adjust the shape of the corresponding Bézier-like curve. We
prove that the new curves have the monotony preservation property.

1. Introduction

As an important geometric modeling tool, the Bézier curve has been widely used in Computer Aided
Geometric Design (CAGD) and Computer Graphics (CG). For a set of control points, a Bézier curve
is defined based on Bernstein polynomials [2]. Once the control points are fixed, the shape of the
Bézier curve cannot be changed. In order to overcome this deficiency, many researchers have tried
to add shape parameters to the basis functions to create new curves whose structures are similar to
the Bézier curve. In [3], Zhu and Han presented a new class of Au-Bernstein basis functions with
two shape parameters. The Au-curves constructed by these basis have many basic properties of the
cubic Bézier curves, besides by altering shape parameters the curve travels from cubic Bézier curve
to control polygon.

In the present study, we modify the Ap-Bernstein basis functions by adding a new shape pa-
rameter, which enables the corresponding family of Ay-curve to travel between the control polygon
and the straight line joining the first and last control points.

2. New Basis Function

Definition 2.1. For shape parameters A, u € [0, +o0c] and v € [0, 1], the proposed blending Func-
tions b; (t; A, u, v), are defined for ¢ € [0,1] as
bo (A v) =1 —v)(1—t)*e ™M+ (1—t)? (1+21)
byt ) =—1 =)A=t e+ (1 —v)(1—1t)*(1+2t) (2.1)
ba (t;,v) = — (1= w) e #0704 (1 - 0)£(3 — 20)
bs (t; ,v) = (1 — ) e #1704 pi?(3 — 2t)
The graphical behavior of proposed basis functions defined in Eq.(2.1) and the effect of shape

parameter can be observed in Figure 1. For A = y = v = 0, the blending Functions are the classical
cubic Bernstein basis functions, see [2].

Keywords: Bernstein basis, Blending functions, Bézier curve, Shape parameter.
AMS Mathematical Subject Classification [2010]: 65D17, 65D18.
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Figure 1: The plot of Auv- basis functions for various values of parameters

Theorem 2.2. For real numbers A\, pu € [0,4+00] and v € [0,1], the blending functions defined in
Definition 2.1 have the following properties:

(a) Linear independence: The blending functions b; (t; A, pu,v) i =0,1,2,3 are linearly indepen-
dent.

(b) Nonnegativity: b; (t; A, p,v) >0 (i =0,1,2,3).

(
(

)

c¢) Partition of unity: Z?:o bi (t; A\, pu,v) = 1.

d) Symmetry: bi (t; >\7 s V) = bp—; (1 -1 )‘7 My V) (7’ =0,1,2, 3)
)

(e) Monotonicity: For a given parameter t € (0,1), b (t; A\, v) and bz (t; \,v) are monotonically
decreasing for shape parameters \ and u, respectively; by (t; \,v) and by (t; \,v) are mono-
tonically increasing for shape parameters \ and p, respectively. by (t; \,v) and by (t; \,v) are
monotonically decreasing for shape parameters v , by (t; \,v) and b3 (t; \,v) are monotonically
increasing for shape parameters v.

(f) Properties at the endpoints:

1, :=0 1, 2=
b0 A ) =40 T (LA )= T
0, 1#0, 07 Z%”’
—1-n)BA), =0, A-n)@3+p), i=3
V, (0, N, p,v) =1 (1 =v)(3+N), =1, V(LA ) =8 —(1—=v)B+p), i=2,
0, i=2 :
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Figure 2: The shape of curves with A = 10, u = 10 and different shape parameters v.

Definition 2.3. Given control points P;(i = 0,1,2,3) in R?, for A\, € [0, 4+00] and v € [0, 1],

3

r(t) = Zbi (LA, v) B, (2.2)

1=0

is called Apv-curve, where b; (t; A, p,v) (1 =0, 1,2, 3) are the blending functions expressed in (2.1).
Figure 2 shows the Auv-curve and the effect on the curves by altering the values of the shape
parameters at the same time under keeping the control points unchanged.
For A = p = v =0, the Auv-curve is the classical cubic Bernstein-Bézier curve, see [2].

Definition 2.4. [1] A system of functions (u, ..., u,) is monotonicity preserving if for any agp <
a1 < ... < a, in R, the function Z?:o a;u; is increasing.

Proposition 2.5. [1] Let (ug,...,u,) be a system of functions defined on an interval [a,b]. Let
v = Z?:l uj fori € {0,1,...,n}. Then (ug,...,uy,) is monotonicity preserving if and only if vy
is a constant function and the functions v; are increasing fori=1,...,n.

Theorem 2.6. The blending functions (b (t; \,v), by (t; A\, v) ,ba (t; p,v) , b3 (t; p, v) defined in (2.1)
are monotonicity preserving.

From Theorem 2.2, the Auv-curve has the following properties,
(a) Geometric property at the endpoints:

7"(0) = P(], r(l) = Pn,
r(0)=1-v)B+N)(PL—P), P"(1)=1-v)B3+ ) (P3— P).

(b) Symmetry: From the symmetry of the Auv-basis functions, one has
r(t; Po, Pr, Py, P3) = 17(1 — t; P3, P, P1, Po).

(c) Geometric invariance: Because 7,(t) is an affine combination of the control points, the shape
of the Auv-curve is independent of the choice of coordinate system.

T(t,PO+Q,P1+Q,P2+Q,P3+Q) :T(t;POaPhPQ,P?))_'—Qa
T(t; MP(),MPl,MPQ,Mpg) = M?’(t; P(),Pl,PQ,Pg).

(d) Convex hull property: Because the Aur-basis functions are nonnegative and sum to one, the

Apv-curve must lie inside the convex hull of its control polygon.
\4¥
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Analysis of COVID-19 pandemic in Iran and Guilan based
on SIRU model

Hosssein Taheri, Nasrin Eghbali, Masoumeh Pourabd

Abstract. In this paper, we investigate the COVID-19 pandemic in Iran from a mathematical
modeling perspective. By improving the well-known susceptible infected recovered (SIR) family
of compartmental models and adding unreported cases obtain a local model for Iran. Also, Our
proposed model was able to predict well based on the data reported. Moreover, Our calculations
were run using MATLAB software. Since we only want infected cases, we have refused to add other
classes that there are can be.

1. Introduction

A novel corona-virus (nCoV), has been causing the deadliest pandemic from the last months of 2019
up to now, defined as the corona-virus disease 2019 (COVID-19) by the World Health Organization
(WHO). It is also known as severe acute respiratory syndrome 2 (SARS-CoV-2). The first cases that
occurred in early December 2019, had been reported in Wuhan, China. To date, many countries
and regions have been locked-down and applied strict social distancing measures to stop the virus
propagation. From a strategic and health care management perspective, the propag

ation pattern of the disease and the prediction of its spread over time are of great importance,
to save lives and minimize the s

ocial and economic consequences of the disease. There are five major types of models in t

he literature that can help us understand the transmissibility of the SARS-CoV-2 from its natural
reservoirs to humans. In references [1-5], the authors gave the following models for Covid -19. But,
finally by using reference [5], we believe that, the SIR model is the best mathematical model for the
prediction of pandemic Covid-19. A first tentative mathematical model of this pandemic (see [2]),
based on the Be-CoDiS model. For information of this model, see [3,4].

2. The Model Description

Recently researchers identified the behavioral effects of the pandemic threat of Covid-19 which has
not been described by a

ny of the existing analytically models [6]. In this scenario, an infected individua

1 instead of being removed(recovery) contributes to the infection spreading upon the reinfection
attempt. In this paper, we used a

new generalized SIR model, Susceptible-Infected(Reported and Unreported)- Susceptible- Rein-
fected (SIRUSI)to describe a

Keywords: Corona-virus pandemic globally; Mathematical modeling; SIRU-model; Parameter identification.
AMS Mathematical Subject Classification [2010]: Primary 26A33; Secondary 34D10, 45N05.
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nd predict the epidemics of Covid-19 in Iran and the province of Guilan, By this model, we can
find the daily number of unrepo

rted cases and we can estimate the n
umber of symptomatic unreported in
fectious individuals too. The model variables and parameters are given by Table 1 Our system

Table 1: The model variables and parameters description

parameters and variables Description
S(t) Number of susceptible populations at time ¢
I(t) Number of asymptomatic infectious at time ¢
R(t) Number of reported infected cases at time ¢
U(t) Number of unreported infected cases
to Time at which the epidemic started
So = S(to) Number of susceptible at time tg
Iy = I(to) Number of asymptomatic infectious at time ¢
Uo = U(to) Number of unreported cases at time tg
T Contact transmission rate
1/v Average time during which asymptomatic infectious are asymptomatic
v = frv Rate at which asymptomatic infectious become reported symptomatic
ve=(1-flv Rate at which asymptomatic infectious become unreported symptomatic
1/p Average time symptomatic infectious have symptoms

of equations was formulated based on the epidemic model (Fig.1) for COvid-19.
On the basis of the above-stated assumptions and the flow diagram of COVID-19 shown in Figure.1,

»»»»»»»»»»»»»»»»»»»»

Reported

TS(1+U)

Susceptible

> Infectious Removed

.....................

Figure 1: Modeling diagram for the transmission of Covid-19

we formulated a dynamical system consisting of four first-order differential equations shown below:

S'(t) = —mS@)[I(t) + U(t)], (2.1)
I'(t) =7S(O)[1(t) + U@®)] —vI(t),

RI(t) =wnl(t) — pR(t),
U'(t) = vl (t) — pU(t).

Where the parameter f, the fraction of asymptomatic infections that become reported symptomatic
infectious, this parameter plays an important role in our study. In short, we compare output data
by solving the model and real data. Then we evaluate f such that this difference between real data
and output data of the system should be minimal.

We consider these equations with initial conditions S(tg), I(to), U(tg) and R(to) = 0, Also we note
V4V
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that R(tg) = 0. It should be noted that due to the nature of this disease hardly anyone was immune
at the beginning of the epidemic, therefore, we assume that everyone in the understudy population
is susceptible to infection.

3. Main results

To solve the system (2.1) it is necessary that the parameters p ,v, N, f and sy be determined. Note
thatsg is considered as the total population. Also, we assume 1/v means that the average period
of infectiousness of both unreported symptomatic infectious individuals and reported symptomatic
infectious individuals is 14 days. We assume 1/u, which means that the average period of infec-
tiousness of asymptomatic infectious individuals is 7 days. These values can be modified as further
epidemiological information becomes known. Here the parameter N is considered 5 days before the
peak day. Note that the results are not very sensitive to the value of N and can be considered 5 to
15 days before the peak day. As mentioned earlier the important parameter is f, so we principally
aim to gain the correct value of parameter f. To do this, we solve the system for different values of
f by the Least Square method for finding the best parameters and by the Runge-Kutta method for
solutions to the system of ODE. The results obtained from the system (2.1) for every value f are
compared to the principle reported data from [7], the correct value f is chosen by observing more
consistency between them. Also, to better compare the results and understand the importance of
the value of parameter f, In what follows, we plotted the graph of ¢ — R(t) for different f’s, as
shown in figure 2 by changing the value of f the number of infected individuals is obtained by
system (2.1) is changed.

It seems in the province of Guilan the reported infected cases are more real than in Iran’s reported

Iran

s e wm e Em am

13 5 7 91115151719212325272931333537394143454749515555575961636567697173

_—— e

s R 251l Reported == « Approximaion Reported =06

------ Approximation Reported f=0.7 == == Approximation Reported #=0 5

Figure 2: The values R(reported infected cases) of this diagram obtained from the solving of system (2.1)
in Iran for f = 0.5, {=0.6 and f=0.7. We compare them with real reported cases.

cases, With f = 0.9 we can get an estimation of the daily unreported cases in the first outbreak
period, the results are shown in figure3.
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Computational aspects of stochastic partial differential
equations using finite element method

Mahdieh Arezoomandan, Ali Reza Soheili

Abstract. This article describes the computational aspects of stochastic parabolic differential
equations driven by additive noise. A fully discrete approximation of the stochastic problem is
provided based on piecewise linear finite elements for the spacial discretization and the implicit Euler
method for the temporal discretization. The computational aspects of the method are illustrated
with a numerical test.

1. Introduction

Stochastic partial differential equations (SPDEs) are widely used models in applied sciences, engi-
neering, and finance. Hence, the design of efficient computational methods for such problems is of
great importance. In particular, the convergence analysis of numerical methods for approximating
the solution of SPDEs is one of the most recently developed areas [1-3]. The aim of this work is to
illustrate numerically the convergence properties of finite element method combined with implicit
Fuler method for a class parabolic semilinear SPDE, of the form

du(t) + Au(t)dt = F(u(t))dt + o(t)dWo(t), u(0) = wo, (1.1)

in a real separable Hilbert space H with inner product (-,-) and norm || | = (-, )% Here, A
is assumed to be a linear, self adjoint, positive definite, not necessarily bounded operator with
compact inverse. Moreover, F' : H — H is a smooth nonlinearity and o : [0,7] x H — H is a
deterministic mapping. {Wg(t)}+>0 is considered to be a Q-Wiener process defined on a filtered
probability space (2, F,P,{F;}+>0). The following assumptions are standard in the literature on
the numerical approximation of stochastic PDEs [4,5]. Let {e;};cny be a complete orthonormal basis
of the Hilbert space ‘H and the covariance operator ) be the linear, bounded, self adjoint operator
on H such that Qu = 3 ., ¢i(v, e;)e;, where {g;}ien is a sequence of non-negative real numbers.
We assume {Wq(t) }+>0 is a Q- Wiener process defined as follows:

Wo(t) =Y VaBi(t)ei, (1.2)
=1

where {; }ien is a family of independent standard real valued Wiener processes. We assume that the
nonlinear operator F in (1.1) is globally Lipschitz continuous. We also assume that the deterministic
function o : [0,T] x H — H satisfies

IAZ o (t)llg < C, Belo1]. (1.3)

Keywords: stochastic partial differential equations, finite element methods,strong convergence rate, additive noise,
implicit Euler method.
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In this work, we are concerned with full discrete approximation of stochastic problem (1.1) based on
the finite element spatial discretization combined with linear implicit Euler method for the temporal
discretization. Let At = % denote the time step size and t; = iAt, i = 1,2,..., N. The full discrete
method is defined by

uptt = Ejf ajupy 4+ ALE} A Py F (uf) + Ejf p Pro () AW, (1.4)
forn=1,...,N, where E}! 5, := (1 + AtAh)_l, with the initial condition ug = Ppup. In (1.4), |the
Wiener increments are denoted by AW = Wo((n + 1)At) — Wo(nAt).

Theorem 1.1. [5] Let u(t) be the solution of (1.1) and let uj be given by (1.4). Then, under the
given assumptions, it holds that

B
[u(tn) = uill Loy < C(B7 + At2), (1.5)
where C' is a constant independent of h and At.
2. Numerical test

In this subsection, we present a numerical test to illustrate the convergence analysis. We consider
the following stochastic problem

ou 0%u .
u(x,0) = 102%(1 — z)?, z € [0, 1],
u(0,t) = u(1,t) =0, t €[0,1].

where
fa,t) = 15et2®(1 — z)? — 10ef(2 — 122 + 1222).

we use a piecewise linear finite element method for the spatial discretization and an implicit Euler
method for the temporal discretization. Let u}} be the approximate solution of u(t) in finite element
space S}, at t, = nAt. The implicit Euler method is to find u} € S}, such that, for all ¢ € Sy,

n+1

(uh —uy

1 6) + (ks 9) = (5B (Waltn) — Walta 1))  6) (2:2)

At
- é Z Va; (/Bl(tn) - Bi(tn—l)) (€5, 0), (2.3)
=1

where ﬁ(ﬁi(tn) — &(tn_l)) = N(0,1). We choose two types of covariance operators, Q = I and
1

the other operator, Qe; = 0 and Qe; = Tog2Ci for 4 > 2. In Figure 1, we plot one realization of the
stochastic problem (2.1) for he two types of the covariance operators. We also plot in Figure 2 the
corresponding profiles at times ¢ = 0.25,0.5,0.75 and final time T" = 1. In Figure 3, we present the
convergence curves for the strong error for the covariance operator () = I. At first, we demonstrate
the convergence rates for the temporal discretization. To do this, we compute the reference solution
with the small timstep At,.; = 2~ and Prep = 277, We perform our numerical simulation with
different time step sizes At,.; = 27t §=3,...,9 and present the mean square errors in Figure 3
(left). As expected, we observe the convergence rate of order %, this is consistent with the strong
convergence estimates of Theorem 1.1. Next, we turn to spatial error approximation. To this
aim, we compute the reference solution using fixed small h,.; = 2710 and Atyep = 276, We plot
in Figure 3 (right) the mean square errors due to the spatial discretization using the step sizes

h=27% i=2,...,8.
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u(xt)

Figure 1: Samples of realization of SPDE (2.1) (left @ = I, Tr(Q) < o0)

u(x,t)

Figure 2: Solution profile at different times (left @ = I, Tr(Q) < o)
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Figure 3: Error versus time stepsize (left) and space stepsize (right)
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