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آموزشͬ های کارگاه
فروش مس علͬ دکتر •

FENICS نرم افزار با آشنایی و معرفͬ
باستانͬ فروش علͬ دکتر •

مالͬ ریاضیات در تصادفͬ کسری دیفرانسیل معادلات بر مبتنͬ مدل های معرفͬ

FEniCS افزار نرم با آشنایی و معرفͬ : کارگاه عنوان
از برخͬ از استفاده دارد. وجود گوناگونͬ افزارهای نرم متناهͬ عناصر روش به جزئͬ مشتقات با دیفرانسیل معادلات حل برای چͺیده:
شامل بزرگͬ تیم توسط که است سورس اپن افزار نرم ،FEnicS افزار نرم دارد. خاصͬ محدویتهای و پیچیدگیها متلب مانند افزارها نرم
مسائل حل برای افزار نرم این است. شده تهیه Mac و Linux ،Windows پلاتفرمهای برای ... و دانشجویان مهندسین، ریاضیدانان،
عددی شͺل به هم را مسأله جواب ͬ شود، م انجام پایتون زبان به که باکدنویسͬکوتاهͬ و ͬ کند م استفاده مسأله وردشͬ شͺل از مرزی مقدار
این مختصر معرفͬ به کارگاه این در کرد. تحلیل Paraview افزار نرم استفاده با را آن ͬ توان م که ͬ آورد م بدست نمودار صورت به هم و
موجود های Solver از استفاده و برنامه نوشتن نصب، چͽونگͬ با کارگاه در کنندگان شرکت تا است این بر تلاش و ͬ شود م پرداخته نرم افزار

شوند. آشنا افزار نرم این در

مالͬ ریاضیات در تصادفͬ کسری دیفرانسیل معادلات بر مبتنͬ های مدل معرفͬ کارگاه: عنوان
براونͬ حرکت از تعمیمͬ عنوان به فرآیند این معرفͬ و کسری براونͬ حرکت تاریخچه بر مقدمه ایکوتاه ذکر از پس کارگاه، این در چͺیده:
دوربرد» بر«وابستگͬ تاکید با و پرداخته وابسته نموهای و متشابهͬ خود خاصیت جمله از فرآیند این اساسͬ خواص بر مروری به استاندارد،
ناهموار تلاطم مدل جمله از مالͬ مهندسͬ و مالͬ ریاضیات در پدیده چند معرفͬ به واقعͬ، دنیای در کاربردی مفهوم کلیدی ترین عنوان به
زمینه این در مطرح عددی مساله چند ادامه در پرداخت. خواهیم ͬ شوند، م منتهͬ فرآیند این به طبیعͬ طور به که (Rough Volatility)

شد. خواهد اشاره نیز تحقیقاتͬ مساله چند به و داده قرار بررسͬ و مطالعه مورد را فرآیند این مسیرهای تولید زمینه در بخصوص
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فارسͬ مقالات
ممͺن کارایی شاخص بیشترین با غیرخطͬ معادلات حل برای حافظه با استیفنسن گون روش های تطبیقͬ حالت بررسͬ ١

٢٠۵ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . لاله چینͬ) (محمدجواد
PDE محدودیت با بهینه سازی مسئلۀ حل برای تکراری روش ͷی ٢

٢١٠ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . سالͺویه) خجسته  داود میرچͬ، (حمید
ابری سرویس های رت بندی و انتخاب در Topsis روش ٣

٢١۵ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . زعفرانیه) مهدی رضوی، شاه بخش (امیر حسین
اطلاعات بهره ی و اصلͬ مولفه تحلیل ترکیبی روش ͷکم به ویژگͬ انتخاب ۴

٢٢٠ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ͬ خانͬ) عل (نگین
شودر ͬͺموج های پایه از استفاده با پینلوف اول معادله حل برای عددی روش ͷی ۵

٢٢۴ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . زیدآبادی) حامد عرفانیان، (مجید
لژاندر عمیق عصبی شبͺه از استفاده با فیشر معادله عددی حل ۶

٢٢٨ . . . . . . . . . . . . . . . . . . . . . . . . . . . پرند) نائینͬ،کورش آقائͬ افضل علیرضا بابائͬ، (مریم
ماشین یادگیری روش های دقت افزایش جهت اصلͬ مولفه های تحلیل در لژاندر متعامد توابع کاربرد ٧

٢٣٢ . . . . . . . . . . . . . . . . . . . حجاریان) مسعود پرند، نائینͬ،کوروش آقائͬ افضل علیرضا بهروزه، (زهرا
معین طیف برای بدیهͬ غیر متقارن ماتریس ساخت ٨

٢٣٧ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . خیز) ͷسب مسعود زاده، زنگوئͬ سمیه )
استاندارد غیر ولترای انتگرال معادلات برای پیوسته ای تکه ایهای جمله چند فضای در محلͬ هم روش وتحلیل تجزیه ٩

ضعیف منفرد باهسته
٢۴١ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . بین) پیش سعید لو، حمزه (افسانه

نیم کره ای پرک های روی انتقالگرما مسئله ی حل برای متوالͬ ͬ سازی خط روش ١٠
٢۴۵ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . باقری) (صفیه

تکراری متناهͬ تفاضل روش از استفاده با جفری‐هامل جریان معادله عددی حل ١١
٢۴٩ . . . . . . . . . . . . . . . . . . . . . . . . . هاشمͬ) سادات اعظم حیدری، محمد یزدانͬ، (زهراسادات

مالͬ پرداخت سرویس های در کلاهبرداری کشف برای ترکیبی پشتیبان بردار ماشین بر مبتنͬ رویͺردی ارائه ١٢
٢۵٣ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ابتیاع) معراج ابتیاع، (مجید

واکنش‐انتشار جزئͬ دیفرانسیل معادله پارامتر تخمین مسأله حل بر مروری ١٣
٢۵٧ . . . . . . . . . . . . . . . . . . . . . . . . . . . خدایی فر) سلمان اصل، ندایی خدیجه رزاقͬ، (یاسمن

فازی رویͺرد با پرتابͽر حرکت دیفرانسیل معادلات دستگاه عددی حل ١۴
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Symmetrical WENO-η schemes for hyperbolic conservation
laws

Rooholah Abedian

Abstract. The aim of this work is to prepare a symmetrical WENO-η (SWENO-η) scheme in the
framework of the finite volume for hyperbolic conservation laws (HCL). The SWENO-η scheme is
a convex combination of a fifth degree polynomial with two third degree polynomials. This fifth-
order SWENO-η scheme uses the same stencil as the traditional WENO proposed by Jiang and
Shu (WENO-JS), could get less absolute truncation errors, and obtain the same accuracy order in a
smooth region. The SWENO-η scheme has advantages over the WENO-JS scheme in its simplicity
and easy extension to higher dimensions.

1. Introduction

Consider the 1D hyperbolic conservation laws

ut + f(u)x = 0. (1.1)

An initial condition u0(x) = u(x, 0) is given along with appropriate boundary conditions. Despite
the smoothness of u0(x), the solution to (1.1) may develop a discontinuity within a finite time. High
order numerical approximations of the developed discontinuity suffer from the Gibbs phenomenon
yielding spurious oscillations near the discontinuity. Nowadays, the classical WENO by Jiang and
Shu [2] is the basis of other methods [1,3], since it is one of the most powerful numerical methods that
can successfully deal with the Gibbs oscillations. In this paper, a simple type of the symmetrical
ENO/WENO methods is presented. ENO schemes for solving Eq. (1.1) are derived in a semi-
discrete form. Thus, first a uniform spatial grid where the cell Ij = [xj− 1

2
, xj+ 1

2
] has width ∆x is

considered. Assuming ūj ≡ 1
∆x

∫
Ij
u(x, t)dx, the semi-discretization formula is derived as

dūj(t)

dt
= − 1

∆x

(
f(u(xj+ 1

2
, t))− f(u(xj− 1

2
, t))

)
. (1.2)

For computing flux f(u) at point xj+ 1
2
, we require a reconstruction polynomial, which is described

in the next section. The numerical flux f̂j+ 1
2
= f(u(xj+ 1

2
, t)) is computed by f̂j+ 1

2
= h(u−

j+ 1
2

, u+
j+ 1

2

)

such that, h is the Lax-Friedrichs monotone flux. Details on how to form SWENO-η are provided
in section 2. The numerical results of the new scheme are presented in section 3.

Keywords: Symmetrical WENO-η scheme, finite volume framework, conservation laws.
AMS Mathematical Subject Classification [2010]: 65M08, 35L65.
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2. Symmetrical WENO-η schemes

Now, we explain in brief how symmetrical WENO-η method is derived to solve Eq. (1.1).
step 1. By considering the big stencil S = {Ij−2, . . . , Ij+2}, the fifth degree reconstruction polyno-
mial p1 can be easily obtained by

p1(x) =

5∑
i=1

U [xj− 5
2
, · · · , xj− 5

2+i]

i−1∑
m=0

i−1∏
l=0,l ̸=m

(x− xj− 5
2+l)

+ U [xj− 5
2
, · · · , xj+ 5

2
, xj ]

5∑
m=0

5∏
l=0,l ̸=m

(x− xj− 5
2+l),

(2.1)

where U [·] is a divided difference of the function U(x) =
∫ x
−∞ u(ξ, t)dξ. Choose another two smaller

stencils: S2 = {Ij−2, Ij−1, Ij} and S0 = {Ij , Ij+1, Ij+2}. It is easy to get the two third degree
polynomials as

pr(x) =

3∑
i=1

U [xj−r− 1
2
, · · · , xj−r+i− 1

2
]

i−1∑
m=0

i−1∏
l=0,l ̸=m

(x− xj−r+l− 1
2
)

+ U [xj−r− 1
2
, · · · , xj−r+ 5

2
, xj ]

3∑
m=0

3∏
l=0,l ̸=m

(x− xj−r+l− 1
2
), r = 0, 2.

(2.2)

The divided difference U [xj−r+ 5
2
, xj ] of Eqs. (2.1) and (2.2) is calculated by

U [xj−r+ 5
2
, xj ] =

1

A

(∫ xj

−∞
u(ξ, t)dξ −

∫ x
j−r+5

2

−∞
u(ξ, t)dξ

)
=

1

A

∫ xj

x
j−r+5

2

∑
j

Lj(x)χj(x)dx, (2.3)

where A = xj − xj−r+ 5
2

and χj(x) is the characteristic function of the cell Ij . To complete Eq.
(2.3), a polynomial is needed that retains the information in the cell Ij , therefore, similar to the
Nessyahu and Tadmor (NT) scheme, the polynomial Lj(x) = ūj + (x − xj)

1
∆xu

′
j is applied, where

the numerical derivative u′j is obtained by the uniformly non-oscillatory (UNO) limiter. By placing
Lj(x) in Eq. (2.3), the following equation is explicitly obtained

U [xj−r+ 5
2
, xj ] =

1

5− 2r
(ūj − (r2 − r − 2)ūj+1 + (r2 − 3r + 2)ūj+2 +

1

4
u′j), r = 0, 2. (2.4)

step 2. Compute the smoothness indicators βr, which measure how smooth the polynomials
pr(x) are in the target cell Ij . The polynomials are smoother in Ij , if these smoothness indi-
cators be smaller. The smoothness indicator associated with each stencil is computed as follows
βr = ξ|L1,ru| + |L2,ru|, r = 0, 1, 2, where the operators Ln,ru are the generalized undivided differ-
ences. The number ξ = 0.1 is a parameter which is to balance the tradeoff between the accuracy
around the smooth regions and the discontinuous regions.
step 3. Calculate the non-linear weights based on the linear weights dr and the smoothness indi-
cators. The main idea is here to construct a global smooth measurement, we define a variable η as
η = |L2,0u+ L2,2u− 2L2,1u|2. We define the new non-linear weights as

wr =
αr∑
s
αs

, such that αr = dr
(
1 +

η

βr +∆x2
)
, s, r ∈ {0, 1, 2}. (2.5)

step 4. The final approximations at the boundaries of each cell are given by

u∓
j± 1

2

= w0p0(xj± 1
2
) + w1

( 1

d1
p1(xj± 1

2
)− d0

d1
p0(xj± 1

2
)− d2

d1
p2(xj± 1

2
)
)
+ w2p2(xj± 1

2
). (2.6)
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For linear weights any convex combination can be considered. Accordingly, we make the choice:
d0 = d2 =

1
8 , d1 =

6
8 .

step 5. The semi-discrete scheme (1.2) is discretized in time by the Runge-Kutta method, such as
a fourth-order one [2].

A sufficient condition for the weights wr to have the fifth-order accuracy is given as wr − dr =
O(∆x4) [2]. The next proposition verifies that the non-linear weights (2.5) fulfill the sufficient
condition even near the presence of the critical points.

Proposition 2.1. The non-linear weights wr satisfy the relation |wr − dr| ≤ ∆x4, even at critical
points, where dr with r = 0, 1, 2 are the linear weights with d0 + d1 + d2 = 1.

Proof. The Taylor’s expansion of βr with r = 0, 1, 2 and η are

β2 = ξ|∆xu
(1)

j+ 1
2

− 23

24
∆x3u

(3)

j+ 1
2

|+ |∆x2u
(2)

j+ 1
2

− 3

2
∆x3u

(3)

j+ 1
2

|+O(∆x4),

β1 = ξ|∆xu
(1)

j+ 1
2

+
1

24
∆x3u

(3)

j+ 1
2

|+ |∆x2u
(2)

j+ 1
2

+
1

24
∆x4u

(4)

j+ 1
2

|+O(∆x5),

β0 = ξ|∆xu
(1)

j+ 1
2

+
1

24
∆x3u

(3)

j+ 1
2

|+ |∆x2u
(2)

j+ 1
2

+
1

2
∆x3u

(3)

j+ 1
2

|+O(∆x4),

η = | −∆x3u
(3)

j+ 1
2

+O(∆x4)|2 = ∆x6(A+O(∆x2)).

(2.7)

If u′
j+ 1

2

= 0 and u′′
j+ 1

2

̸= 0, therefore βr + ∆x2 = C∆x2(1 + O(∆x)), for some constant C > 0.
Therefore, we obtain αr = dr

(
1+ η

βr+∆x2

)
= dr

(
1+O(∆x4)

)
. The given condition d0 + d1 + d2 = 1

and with a straightforward algebraic operation, it can finally be concluded that wr = αr∑
s αs

=

dr +O(∆x4), which leads to the conclusion.

3. Numerical results

The numerical results generated by SWENO-η are compared with the classical WENO-JS [2].
Accordingly, we solve ut + (u

2

2 )x = 0, known as the inviscid Burger’s equation, with the initial
condition u(x, 0) = 1 + 0.5 sin(πx) and periodic boundary condition. When t = 0.12 the solution
is still smooth, and the errors and numerical orders of accuracy by SWENO-η and WENO-JS are
shown in Fig. 1. We can see that both schemes achieve their designed order of accuracy, and
SWENO-η produces less truncation errors. Fig. 1 shows that SWENO-η scheme needs less CPU
time than WENO-JS. Now, we consider the initial condition u(x, 0) = 1 for |x| < 1/3 and u(x, 0) = 0
elsewhere. We end this problem with the solution on 80 cells in Fig. 1. SWENO-η is sharper than
WENO-JS on the expansion wave and the shock.
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Figure 1: Left: Computing time and error. Right: solution at t = 3.5/π2.
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Septic B-spline quasi-interpolation WENO schemes for
hyperbolic conservation laws

Rooholah Abedian

Abstract. In this work, a septic B-spline quasi-interpolation (SBSQI) based numerical scheme for
hyperbolic conservation laws (HCL) is proposed. To ensure the non-oscillatory profile of the solution,
an adaptive SBSQI (ASBSQI) scheme for HCL is considered. The ASBSQI method maintains higher
order accuracy in the smooth regions using SBSQI approximation and in the non-smooth regions,
the traditional WENO-JS method is used to preserve a non-oscillatory profile.

1. Introduction

For approximate solution of the 1D non-linear hyperbolic conservation law

ut + f(u)x = 0, (1.1)

with the initial condition u(x, 0) = u0(x), high-resolution schemes are considered. The solution
of Eq. (1.1) may admit regions of sharp transition. Shocks may develop in the solution within a
finite time. Many methods such as spectral or finite difference methods fail to capture the solution
accurately in the regions where the solution has large variations or shocks. B-splines are employed
extensively in developing numerical schemes for partial differential equations, mainly because of their
better approximation properties as compared to polynomials. Consider the interval I = [a, b] to be
partitioned into m subintervals Ij = [xj− 1

2
, xj+ 1

2
], j = 1, 2, . . . ,m of equal length ∆x = xj+ 1

2
−xj− 1

2
.

Let
∑

m = {xj : j = 1, 2, . . . ,m} denotes the set of partition points also known as set of knots
and Sd(I,

∑
m) denotes the (m + d)-dimensional spline space of degree d over the partition

∑
m.

The set {Bd
j : j = 1, . . . ,m+ d} forms the basis of spline space Sd(I,

∑
m), where Bd

j denotes the
B-spline of degree d. The septic B-spline quasi-interpolation is defined as Qdf =

∑m+d
j=1 µj(f)B

d
j

where coefficient µj(f) is the linear combination of discrete values of f (see [2] for more details).

2. Adaptive SBSQI WENO scheme

This section briefly describes how to design ASBSQI-WENO scheme to solve Eq. (1.1).
step 1. By considering the big stencil S = {Ij−2, . . . , Ij+2}, the fourth degree reconstruction
polynomial p can be easily obtained by considering the following condition

1

∆x

∫
Ii

p(η)dη = ūi, i = j − 2, . . . , j + 2. (2.1)

Keywords: B-spline, finite difference methods, conservation laws.
AMS Mathematical Subject Classification [2010]: 65M06, 35L65.
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SBSQI-WENO schems for HCL

step 2. Identify the extreme points of p(x). Since the degree of p′(x) is at most three, therefore,
the real zero points of p′(x) can be explicitly solved and one is the extreme point of p(x) if it is not
a doubled zero point of p′(x).
step 3. Now if the extreme points of the reconstruction polynomial p(x) are outside the big stencil
S or there is no extreme point at all,

ut +

m+5∑
j=1

µj(f)(B
5
j (x))

′ = 0, x ∈ [a, b]. (2.2)

Using the notations fk = f(uk) and uk = u(xk, t) for xk ∈
∑

m, the above equation reduces to a
system of ODEs

duj(t)

dt
+

1

∆x

j+5∑
i=j−5

bifi = 0, (2.3)

where the coefficients bk can be found from [2] and the procedure jumps to step 5.
step 4. Now if there is one or more extreme points in the big stencil S, the traditional WENO-JS
process proposed by Jiang and Shu [1] is applied as follows. The approximation of Eq. (1.1) leads
to system of ODEs by applying the method of lines, where the finite difference approximation is
replaced to the spatial derivative and yields a semi-discrete scheme

duj(t)

dt
+

1

∆x
(f̂j+ 1

2
− f̂j− 1

2
) = 0. (2.4)

Here, f̂j± 1
2

are called numerical fluxes. By defining a function h(x) implicitly as

f(u) =
1

∆x

∫ x+∆x
2

x−∆x
2

h(η)dη, (2.5)

we have f(u)x|x=xj = 1
∆x(h(xj+ 1

2
)− h(xj− 1

2
)), where h(xj± 1

2
) is a approximation to the numerical

flux f̂j± 1
2
. To ensure the numerical stability and to avoid entropy violating solutions, the flux

f(u) is splitted into two parts f+ and f−, thus f(u) = f+(u) + f−(u) where df+(u)
du ≥ 0 and

df−(u)
du ≤ 0. The numerical fluxes f̂j± 1

2
is obtained by Eq. (2.5) which are positive and negative

parts of f(u) respectively and with this we have f̂j+ 1
2
= f̂+

j+ 1
2

+ f̂−
j+ 1

2

. The negative part of the
split flux, is symmetric to the positive part with respect to xj+ 1

2
, therefore we will only describe

how f̂+
j+ 1

2

is approximated. From here onwards, the ‘+’ sign in the superscript is dropped for

simplicity. To construct f̂j+ 1
2
, the traditional fifth-order WENO scheme employs the big stencil S

which is subdivided into three candidate sub-stencils Sk = {Ij+k, Ij+k−1, Ij+k−2} with k = 0, 1, 2.
Let f̂k

j+ 1
2

=
∑2

q=0 ck,qfj+k+q−2 be the second-degree polynomial constructed on Sk to approximate
h(xj+ 1

2
) where the coefficients ck,q are the Lagrange’s interpolation coefficients depending on the

shifting parameter k. The flux values on each sub-stencils can be seen in [1]. The convex combination
of the flux functions define the approximation to the value of h(xj+ 1

2
) which is f̂j+ 1

2
=

∑2
k=0wkf̂

k
j+ 1

2

,
where wk are the non-linear weights. The non-linear weights wk are defined as

wk =
αk∑2
q=0 αq

, αk =
dk

(ϵ+ βk)2
, (2.6)

T
he

9t
h

Se
m

in
ar

on

Numerical Analysis and
its

A
pplications

١٧



R. Abedian

where 0 < ϵ << 1 is considered to prevent the denominator becoming zero and the coefficients dk
are known as the ideal weights because they generate the upstream central fifth-order scheme for
the five-point stencil S. The values of ideal weights are given by {d0, d1, d2} = {0.1, 0.6, 0.3}. Also,
βk is a smoothness indicator which measures the smoothness of a solution over a particular stencil.
The suggested smoothness indicators βk of Jiang and Shu are given by

βk =
2∑

q=1

∆x2q−1

∫
Ij

(
dqf̂k

dxq
)2. (2.7)

step 5. The semi-discrete scheme (2.4) is discretized in time by the Runge-Kutta method, such as
a fourth-order one [1].

3. Numerical results

In this section, the numerical results obtained by ASBSQI-WENO are compared with WENO-
JS [1]. Therefore, Eq. (1.1) with u = (ρ, ρu,E) and f(u) = (ρu, ρu2 + p, u(E + p)), known as Euler
equations, with two different initial conditions is considered. Here, ρ, u, p = 0.4(E − 1

2ρu
2) and

E are the density, velocity, pressure and total energy, respectively. The initial conditions are (α)
(ρ, u, p) = (1+0.99 sin(x), 1, 1) for x ∈ [0, 2π]; (β) (ρ, u, p) = (0.445, 0.698, 3.528) for x ∈ [0, 0.5) and
(ρ, u, p) = (0.5, 0, 3.571) for x ∈ [0.5, 1]. For case α, periodic boundary conditions are applied and
the exact solution of ρ is ρ(x, t) = 1+0.99 sin(x− t). In case β, known as Lax problem, transmissive
boundary conditions are applied. The results of ASBSQI-WENO and WENO-JS for density are
shown in Table 1. Fig. 1 shows the numerical results of both schemes.
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Figure 1: The Lax problem with N = 200. Top(left): the density. Top(right): the zoomed region of
the density. Bottom(left): the zoomed region of the density. Bottom(right): the points where the WENO
reconstruction procedure is used in the SWENO scheme “□”.
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Table 1: L1 and L∞ errors and the order of convergence for case α.

WENO-JS ASBSQI-WENO
N L1-error L1-order L∞-error L∞-order L1-error L1-order L∞-error L∞-order
40 8.64(-06) - 1.79(-05) - 5.08(-06) - 1.04(-05) -
80 2.87(-07) 4.91 5.74(-07) 4.96 1.07(-07) 5.57 5.36(-07) 4.28
160 8.89(-09) 5.01 1.87(-08) 4.94 6.00(-09) 4.16 1.57(-08) 5.09
320 2.90(-10) 4.94 5.57(-10) 5.07 2.53(-10) 4.57 5.44(-10) 4.85
640 8.68(-12) 5.06 1.74(-11) 5.00 8.25(-12) 4.94 1.53(-11) 5.15
1280 2.81(-13) 4.95 4.85(-13) 5.16 2.52(-13) 5.03 4.30(-13) 5.15
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TM-eigenvalue of odd-order tensors

Mehri Pakmanesh, Hamid Reza Afshin

Abstract. In this paper, we propose a definition for eigenvalues of odd-order tensors based on
some operators. Also, we define the Schur form and the Jordan canonical form of such tensors,
and discuss commuting families of tensors. Furthermore, we prove some eigenvalue inequalities for
Hermitian tensors. Finally, we introduce characteristic polynomials of odd-order tensors.

1. Introduction

In 2010, Misha E. Kilmer introduced a notion of product for third-order tensors, and used it to
define an SVD decomposition and an approximation of the CP decomposition of such tensors. The
product has been widely used in many areas, including computer vision, image processing, signal
processing, data completion and denoising, low-rank tensor recovery, and robust tensor PCA. Due
to the importance of the T -product, some researchers have focused on third-order F -square tensors
and their properties [1]. Liu [1] defined T -eigenvalues based on the T -product of third-order F -
square tensors in 2021. Qi, Miao, and Wei in [2] presented the definition of generalized tensor
function according to the tensor singular value decomposition (T-SVD) based on the tensor T-
product. In [3], T -similarity, T -Jordan canonical forms, and T -eigenvalues of third-order F -square
tensors were introduced.

Our idea is to propose a product for all odd-ordered tensors. This is in fact a generalization of the
product introduced by Kilmer. Using this product, one can define a similar T-SVD decomposition,
which in turn can be utilized to approximate the CP decomposition of higher-order tensors

In this paper, we introduce TM -eigenvalues of odd-order tensors, and discuss their properties.
Moreover, we study commuting families of tensors, extend Weyl’s theorem and Cauchy’s interlacing
theorem from matrices to tensors, and introduce Schur and Jordan canonical forms for odd-order
tensors. Finally, we define TM -characteristic polynomials.

2. The TM -product

An odd-order tensor A = (ai1,i2,...,im,j1,j2,...jm,d) is a multi-array of entries
ai1,i2,...,im,j1,j2,...jm,d ∈ C, where ij = 1, . . . , nj for j = 1, . . . ,m, jk = 1, . . . , qk for k = 1, . . . ,m, and
d = 1, . . . , p. Sometimes, we simply call n1 × n2 × · · · × nm × q1 × q2 × · · · × qm × p the size of A.
We denote the set of all odd-order tensors by Cn1×n2×···×nm×q1×q2×···×qm×p.

Definition 2.1. For A ∈ Cn1×n2×···×nm×q1×q2×···×qm×p, we let

A(k) = A(· · · :, · · · :, k) ∈ Cn1×n2×···×nm×q1×q2×···×qm .

Keywords: TM -product, TM -eigenvalue, TM -Schur form, TM -Jordan canonical form, Odd-order tensor.
AMS Mathematical Subject Classification [2010]: 15A48, 15A69, 65F10.
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TM -eigenvalue of odd-order tensors

By transforming the indices, a tensor can be represented by a matrix which is called the matricization
of the tensor. For a tensor A(k) ∈ Cn1×n2×···×nm×q1×q2×···×qm , we introduce the matricization A

(k)
M

which is an (n1n2 . . . nm)× (q1q2 . . . qm) matrix defined by

A
(k)
M (d, c) = ai1,i2,...,im,j1,j2,...jm,k,

where
d = 1 +

∑m
l=1(il − 1)

l−1∏
l′=1

nl′ , c = 1 +
∑m

l=1(jl − 1)
l−1∏
l′=1

ql′ .

The operators bcircM ,unfoldM and foldM are defined by

bcircM (A) :=


A

(1)
M A

(n)
M A

(n−1)
M . . . A

(2)
M

A
(2)
M A

(1)
M A

(n)
M . . . A

(3)
M...

...
...

A
(n)
M A

(n−1)
M . . . A

(2)
M A

(1)
M

 ,

unfoldM (A) :=


A

(1)
M

A
(2)
M...

A
(n)
M

 ,

and foldM (unfoldM (A)) := A, which means that foldM is the inverse operator of unfoldM . It is
easy to check that these operators are bijective. Therefore, we also consider bcirc−1

M as the inverse
operator of bcircM , so that bcirc−1

M (bcircM (A)) = A.

Definition 2.2. If A ∈ Cn1×n2×···×nm×q1×q2×···×qm×p and B ∈ Cq1×q2×···×qm×p1×p2×···×pm×p, then
the TM -product of A and B, denoted by A ∗B, is an n1 × n2 × · · · × nm × p1 × p2
× · · · × pm × p tensor defined by

A ∗B = foldM (bcircM (A)unfoldM (B)).

Definition 2.3. Let A be an n1 × n2 × · · · × nm × q1 × q2 × · · · × qm × p tensor. The tensor AT is
a q1 × q2 × · · · × qm × n1 × n2 × · · · × nm × p tensor, obtained as follows. Transpose each A

(k)
M , and

then commute A
(2)
M with A

(p)
M , A(3)

M with A
(p−1)
M , and continue until the end. Also, the conjugate

transpose A∗ is obtained using the following procedure. Conjugate transpose each A
(k)
M , and then

commute A
(2)
M with A

(p)
M , A(3)

M with A
(p−1)
M , and continue until the end.

Lemma 2.4. If A ∈ Cn1×n2×···×nm×q1×q2×···×qm×p and B ∈ Cq1×q2×···×qm×p1×p2×···×pm×p, then the
following hold.

(i) unfoldM (A) = bcircM (A)Epq1q2...qm×q1q2...qm
1 .

(ii) bcircM (foldM (bcircM (A)Epq1q2...qm×q1q2...qm
1 )) = bcircM (A).

(iii) The operator bcircM is a linear operator, that is,

bcircM (αA+ βB) = αbcircM (A) + βbcircM (B),

where A and B are of the same size, and α, β ∈ C.
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(iv) bcircM (A ∗B) = bcircM (A)bcircM (B).

(v) bcircM (AT ) = (bcircM (A))T and bcircM (A∗) = (bcircM (A))∗.

Definition 2.5. Suppose that A ∈ Cn1×n2×···×nm×n1×n2×···×nm×p, X ∈ Cn1×n2×···×nm×1×1×···×1×p

and X ̸= 0. If
A ∗ X = λX, (2.1)

for some λ ∈ C, then λ is called a TM -eigenvalue of A, and X is said to be a TM -eigenvector of A.

Lemma 2.6. The tensor eigenvalue problem in (2.1) is equivalent to the matrix eigenvalue system

bcircM (A)unfoldM (X) = λunfoldM (X). (2.2)

According to Lemma 2.6, it is possible to calculate the TM -eigenvalues and TM -eigenvectors of
A by solving the eigenvalue problem of matrix bcircM (A).
Now, we define symmetric and Hermitian tensors.

Definition 2.7. A tensor A ∈ Cn1×n2×···×nm×n1×n2×···×nm×p is called symmetric if AT=A, and it
is called Hermitian if A∗ = A.

Since TM -eigenvalues of a Hermitian tensor A ∈ Cn1×n2×···×nm×n1×n2×···×nm×p are real, we adopt
the convention that they are always arranged in the algebraically nondecreasing order, that is,

λmin = λ1 ≤ λ2 ≤ · · · ≤ λn1n2...nmp−1 ≤ λn1n2...nmp = λmax. (2.3)

In the following, we extened Weyl theorem for tensors.

Theorem 2.8. Let A,B ∈ Cn1×n2×···×nm×n1×n2×···×nm×p be Hermitian tensors, and let the respective
TM -eigenvalues of A,B and A+B be {λi(A)}n1n2...nmp

i=1 , {λi(B)}n1n2...nmp
i=1 and {λi(A+B)}n1n2...nmp

i=1 ,
each algebraically ordered as in (2.3). Then

λi(A+B) ≤ λi+j(A) + λn1n2...nmp−j(B), j = 0, 1, . . . , n1n2 . . . nmp− i, (2.4)

for each i = 1, 2, . . . , n1n2 . . . nmp, with equality for some pair i, j if and only if there exists a nonzero
tensor

X = foldM (F ∗
p ek ⊗ x) ∈ Cn1×n2×···×nm×1×1×···×1×p, (2.5)

such that

A ∗ X = λi+j(A)X, B ∗ X = λn1n2...nmp−j(B)X, (A+B) ∗ X = λi(A+B) ∗ X,

where x ∈ Cn1n2...nm , Fp is the p × p discrete Fourier matrix, ek is the kth column of the p × p
identity matrix, and 1 ≤ k ≤ p. Also,

λi−j+1(A) + λj(B) ≤ λi(A+B), j = 1, 2, . . . , i, (2.6)

for each i = 1, 2, . . . , n1n2 . . . nmp, with equality for some pair i, j if and only if there exists a nonzero
tensor X such that

A ∗ X = λi−j+1(A) ∗ X, B ∗ X = λj(B)X, (A+B) ∗ X = λi(A+B)X,

where X is defined as in (2.5). If A and B have no common TM -eigenvectors, then the inequalities
in (2.4) and (2.6) are strict.
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Perturbed extended second derivative backward
differentiation formula

Tahere Majidi, Ali Abdi, Gholamreza Hojjati

Abstract. The purpose of this paper is to study methods with super-future point technique from
second derivative general linear methods point of view, which makes it possible to have satisfactory
stability properties. We present one new general class of methods by perturbing the abscissa vector
of the modified extended second derivative backward differentiation formula, that can be considered
as modified second derivative linear multistep methods. Some numerical experiments confirm the
efficiency and robustness of the proposed method in solving stiff problems.

1. Introduction

Consider the stiff initial value problem{
y′(t) = f(y(t)), t ∈ [t0, T ],
y(t0) = y0,

(1.1)

where f : Rm → Rm and m is the dimension of the system. One of the most popular directions to
construct methods with a good accuracy and desirable stability properties is using of super-future
point technique based on backward differentiation formula (BDF) and higher derivatives of the
solution [3]. Using this idea leads into extended second derivative BDF methods (ESDBDFs) [4].
Second derivative general linear methods (SGLMs) as a unifying framework for the traditional
numerical methods using second derivative of the solution [1, 2]. The k-step ESDBDFs have the
general form [4]

k∑
j=0

α̂jyn+j = hβ̂kfn+k + h2(γ̂kgn+k − γ̂k+1gn+k+1). (1.2)

The predictor was defined by second derivative BDF (SDBDF)

yn+k +

k−1∑
j=0

αjyn+j = hβkfn+k + h2γkgn+k. (1.3)

The algorithm based on ESDMM approach goes as follows:

(1) Compute yn+k as the solution of the k-step SDBDF

yn+k +
k−1∑
j=0

αjyn+j = hβkfn+k + h2γkgn+k, (1.4)

Keywords: Extended second derivative multistep methods, Second derivative methods, Second derivative general
linear methods , Stiff problems, A– and A(α)–stability.
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Perturbed extended second derivative backward differentiation formula

(2) Compute yn+k+1 as the solution of the k-step SDBDF

yn+k+1 + αk−1yn+k +

k−2∑
j=0

αjyn+j+1 = hβkfn+k+1 + h2γkgn+k+1, (1.5)

(3) Compute yn+k as the solution of the k-step ESDBDF

yn+k +

k−1∑
j=0

α̂jyn+j = hβ̂kfn+k + h2(γ̂kgn+k − γ̂k+1gn+k+1). (1.6)

The stage (3) can be replaced by a modified ESDBDF (MESDBDF) as follows:

(3*) Compute yn+k from (1.2) as the solution of

yn+k +
k−1∑
j=0

α̂jyn+j =h(β̂k − βk)fn+k + hβkfn+k + h2(γ̂k − γk)gn+k

−h2γ̂k+1gn+k+1 + h2γkgn+k. (1.7)

2. A review on the SGLMs

SGLMs for the numerical solution of (1.1) are defined by

Y [n] = h(A⊗ Im)f(Y [n]) + h2(A⊗ Im)g(Y [n]) + (U ⊗ Im)y[n−1],

(2.1)y[n] = h(B ⊗ Im)f(Y [n]) + h2(B ⊗ Im)g(Y [n]) + (V ⊗ Im)y[n−1],

n = 1, 2, . . . , N, where Nh = T − t0 and h is the stepsize, ⊗ the Kronecker product of two matrices
and Im stands for the identity matrix of dimension m. Here, the vector Y [n] = [Y

[n]
i ]si=1 denotes

approximations of the stage order q to the vector y(tn−1 + ch) = [y(tn−1 + cih)]
s
i=1 where c =

[c1 c2 . . . cs]
T is the abscissa vector. Also y[n−1] = [y

[n−1]
i ]ri=1 and y[n] = [y

[n]
i ]ri=1 are the input and

output vectors at the step number n, respectively. For more details on SGLMs, see [1, 2].

2.1. MESDBDF as SGLMs

In order to represent MESDBDF as SGLMs, it is necessary to replace (1.4) into (1.5). Then
MESDBDF scheme can be written as SGLM (2.1) with three stages, k inputs and the abscissae
vector defined by

c = [k + 1 k + 2 k + 1]T . (2.2)

3. Perturbed MESDBDF

In this section, we perturbe the abscissa vector c of the MESDBDF methods that will be called
modified second derivative linear multistep methods (MSLMMs). Therefore, the resulting coefficient
vector takes the form

c =
[
k + 1 + ξ1, k + 1 + ξ2, k + 1

]T
. (3.1)

Here, we investigate the stability properties of MSLMMs. The stability polynomial p(w, z) of these
methods can be taken the following form

p(w, z) =
1

(1− λz − µz2)3

k∑
j=0

aj(z)w
j , (3.2)
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where each aj(z), j = 0, 1, . . . , k, is a polynomial of degree at most six in z, whose coefficients depend
on the two parameters ξ1 and ξ2. We aim to find the optimum values for the free parameters ξ1
and ξ2 to maximize the angle α of A(α)-stability of the methods. By using the boundary locus
technique [5], we constructed an objective function

fn : (ξ1, ξ2) → [0,
π

2
].

We minimize objective function fn by using fminsearch command from Matlab. The values of
angle α of A(α)-stability of MSLMMs are reported and compared with MESDBDFs in Table 1.

Table 1: Angles α of A(α)–stability for MSLMMs and MESDBDFs for k = 5, 6, 7, 8.

MSLMM MESDBDF

k ξ1 ξ2 p α p α

5
26

19237
− 23

160
7 90◦ 7 89.86◦

6
795

89826

2653

36923
8 90◦ 8 88.49◦

7
69

5000
− 811

5000
9 89.99◦ 9 85.43◦

8
187

2500
− 325

2082
10 89.85◦ 10 81.81◦

4. Numerical experiments

We consider the linear stiff system{
y′1 = −αy1 − βy2 + (α+ β − 1)e−t, y1(0) = 1,
y′2 = βy1 − αy2 + (α− β − 1)e−t, y2(0) = 0,

(4.1)

with the exact solution y1(t) = y2(t) = e−t. In our numerical experiments, we select α = 0.6,
β = 25. Numerical results in Table 2 show that MSLMMs are more accurate than MESDBDF.

Table 2: Computed error at the end of the interval of integration [0, 60] for MESDBDF and MSLMM
applied to problem 4.1.

h 0.1 0.05 0.025
MESDBDF 1.10× 102 3.84× 10−27 1.76× 10−23

k = 7 MSLMM 5.12× 10−35 4.52× 10−31 5.97× 10−31
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Restricting the solution set of the interval linear systems
with multiple right-hand sides

Marzieh Dehghani-Madiseh

Abstract. In this work, we study the interval linear systems with multiple right-hand sides AX =
B and consider it as an interval linear matrix equation. Using the Kronecker product, this interval
matrix equation is converted to the interval linear system (I ⊗A)vec(X) = vec(B). Solution set of
the Kronecker form encloses the solution set of the main interval matrix equation AX = B. Thus
we try to impose some conditions which imply regularity of I ⊗A and so boundedness the solution
set of the main problem. The proposed conditions do not deal directly with the large interval matrix
I ⊗A and so in computational point of view are efficient.

1. Introduction

Some class of problems such as structural mechanics, computation of the frequency response matrix
and electromagnetic scattering naturally lead to solve several linear systems that have the same
coefficient matrix but differ in their right-hand sides, i.e.,

A(x1, x2, . . . , xn) = (b1, b2, . . . , bn).

These systems can be written in a matrix form

AX = B, (1.1)

therein A and B are m-by-m and m-by-n known matrices respectively, and X is the m-by-n un-
known matrix. Practically, components of A and B are obtained from experience, but due to
the measurement errors, theses components will accompany with some uncertainties which can be
presented in an interval form and so we will have the interval matrix equation

AX = B, (1.2)

in which A and B are interval matrices. The interval matrix equation (1.2) was studied by Hashemi
and Dehghan [3]. They presented some analytic results and characterizations for AE-solution sets
of this interval matrix equation. Dehghani-Madiseh and Dehghan [2] considered the parameterized
version of the equation (1.1), i.e., the parametric matrix equation A(p)X = B(p).

A first idea for dealing with the interval equation (1.2) is to convert it to the interval linear
system

Gx = b, (1.3)

Keywords: Matrix equations, Kronecker product, Interval arithmetic.
AMS Mathematical Subject Classification [2010]: 65G40,15A24.
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Restricting the solution set of the interval matrix equation

therein G = I ⊗A, x = vec(X), b = vec(B) and I stands for the identity matrix of order n. The
Kronecker product E ⊗ F of two matrices E and F is the block matrix whose its (i, j)-th block is
eijF . For X = (xij) ∈ Rm×n, the vector vec(X) ∈ Rmn is obtained by stacking the columns of X,
i.e, vec(X) = (x11, . . . , xm1, . . . , x1n, . . . , xmn)

⊤.
Here using regularity concept of the interval matrices, we present some conditions under which

the coefficient matrix I⊗A is regular and besides the solution set of (1.2) is bounded. Advantage of
our idea is that we do not directly deal with the large interval matrix I ⊗A, since this matrix is of
high dimension specially when n is large. We just work with the main matrix A which considerably
reduces computational costs.

Notations. In this note, bold face letters denote interval quantities and ordinary letters stand
for real quantities. IR = {x = [x,x] : x ≤ x, x,x ∈ R} is the set of real intervals and the set of
m-by-n real interval matrices is denoted by IRm×n. For the real interval x = [x,x] define midpoint
xc := (x + x)/2 and radius x∆ := (x − x)/2. The concepts of midpoint and radius for interval
vectors and matrices are defined componentwise. For a real matrix A, ρ(A) denotes its spectral
radius.

2. Our result

In this section using the same convention in [3], we first introduce the concept of solution set for
the interval matrix equation (1.2) and then using its Kronecker form we present some conditions
under which this solution set is bounded.

Definition 2.1. The solution set of the interval matrix equation (1.2) is defined as

Ξ(A,B) = {X ∈ Rm×n : (∃A ∈ A)(∃B ∈ B)(AX = B)}. (2.1)

Let Ξ(G,b) be the solution set of (1.3) and define S as

S = {vec(X) : X ∈ Ξ(A,B)}, (2.2)

then it is obvious that S ⊆ Ξ(G,b). Therefore, by solving the interval linear system (1.3) using the
existing methods, we can specify the columns of the interval matrix X as an enclosure for Ξ(A,B).
But the enclosure of Ξ(A,B) is achievable if it is a bounded set. Here, using the Kronecker form
(1.3), we present some conditions for boundedness the solution set of the interval system (1.2).

Definition 2.2. The square interval matrix A is regular if each A ∈ A is nonsingular.

Theorem 2.3. [1] Let G ∈ IRn×n. If ρ(|(Gc)−1|G∆) < 1, then G is regular.

Lemma 2.4. If A,C ∈ Rm×m, B,D ∈ Rn×n and X ∈ Rm×n, then we have
1. (A⊗B)(C ⊗D) = AC ⊗BD, 2. (A⊗B)−1 = A−1 ⊗B−1,
3. vec(AX) = (I ⊗A)vec(X), 4. λ(A⊗B) = λ(A)λ(B),
therein λ(A) and λ(B) denote the eigenvalues of A and B, respectively.

Theorem 2.5. Consider the interval linear system of equations (1.3). If ρ(|(Ac)−1|A∆) < 1 then
G is regular and the solution set Ξ(A,B) of the interval matrix equation (1.2) is bounded.

Proof. Since G = I ⊗A, we have

Gc = (I ⊗A)c = I ⊗Ac, G∆ = (I ⊗A)∆ = I ⊗A∆.
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So using Lemma 2.4 we can write

|(Gc)−1|G∆ = (|(I ⊗Ac)−1|)(I ⊗A∆)

= (|I ⊗ (Ac)−1|)(I ⊗A∆)

= (I ⊗ |(Ac)−1|)(I ⊗A∆)

= I ⊗ (|(Ac)−1|A∆).

Now again using Lemma 2.4 and the above relation, we have

λ(|(Gc)−1|G∆) = λ(I)λ(|(Ac)−1|A∆) = λ(|(Ac)−1|A∆).

Thus condition ρ(|(Ac)−1|A∆) < 1 yields

ρ(|(Gc)−1|G∆) < 1,

and according to Theorem 2.3 we conclude that the interval matrix G is regular. Regularity of the
coefficient matrix G yields boundedness of the solution set Ξ(G,b) of the interval linear system
of equations (1.3). So by the mentioned point, we conclude that the solution set Ξ(A,B) of the
interval matrix equation (1.2) is bounded.

Now we present another condition which yields the solution set Ξ(A,B) of the interval matrix
equation (1.2) is bounded. This condition also yields regularity of the interval matrix G.

Theorem 2.6. Consider the interval matrix equation (1.2). If the inequality |mid(A)X| ≤ rad(A)|X|
has only the trivial solution X = 0 ∈ Rm×n, then the interval matrix G in (1.3) is regular and the
solution set Ξ(A,B) is bounded .

Proof. If we define x = vec(X), then using Lemma 2.4, we obtain the following equivalent forms
for inequality |mid(A)X| ≤ rad(A)|X|

|mid(A)X| ≤ rad(A)|X|
⇐⇒ |vec(mid(A)X)| ≤ vec(rad(A)|X|)
⇐⇒ |(I ⊗Ac)x| ≤ (I ⊗A∆)|x|
⇐⇒ |(I ⊗A)cx| ≤ (I ⊗A)∆|x|
⇐⇒ |Gcx| ≤ G∆|x|.

So assumption of the theorem yields that the inequality |Gcx| ≤ G∆|x| has only the trivial
solution x = 0 ∈ Rmn. Therefore by Theorem 4.1 of [4], we conclude that the interval matrix G is
regular and similar to what has been mentioned in the previous theorem, regularity of the coefficient
matrix G yields boundedness the solution set Ξ(A,B) of the interval matrix equation (1.2).
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Pricing of Europan option using three types of b-spline
functions

Farshid Nourian, Mehrdad Lakestani, Sedigheh Sabermahani, Yadollah
Ordokhani

Abstract. In this paper, we present a numerical method for pricing European options. This
approximation method is based on the characteristic function and family of B-Spline function (in-
cluding: Linear, Quadratic and Cubic B-Spline).

1. Introduction

One of the most important issues in quantitative finance is pricing options using numerical methods
that include numerical solution of PDE, numerical integration and the Monte Carlo method. There
are various techniques for numerical integration, such as the Cos method [1], the Wavelet method [3]
and the SWIFT method [2].

2. option valuation

Here we consider this risk-neutral option valuation formula [2]

v(x, t) = exp(−r(T − t))EQ [v(y, T ) |x ]

= exp(−r(T − t))

∫
R
v(y, T )f(y |x)dy,

where v denotes the option value, T is the maturity time, t is the initial date, EQ is the expectation
operator under the risk-neutral measure Q, x and y are state variables at time t and T , respectively,
f(y |x) is the probability density of y given x, and r is the deterministic risk-neutral interest rate.
The density function f is unknown, while the characteristic function is available for different asset
price dynamics, which is the Fourier transform of f .

The variables x and y are also defined as follows

x = ln(
St

K
), y = ln(

ST

K
),

with St the underlying price at time t and K the strike price. Also, the pay-off for European option
is obtained from the following equation

v(y, T ) = [α ·K(exp(y)− 1)]+,

α =

{
1, call,

−1, put.

Keywords: Option pricing, B-Spline function, Characteristic function, Collocation method .
AMS Mathematical Subject Classification [2010]: 91B25, 41A15, 74G15 .
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Pricing of Europan option

3. B-Spline and Characteristic function

Definition 3.1. The sth order of the B-Spline function is defined as follows [3]

Ns(x) =

∫ +∞

−∞
Ns−1(x− t)N0(t)dt =

∫ 1

0
Ns−1(x− t)dt, s ≥ 1,

where,
N0(x) =

{
1, x ∈ [0, 1) ,
0, o.w.

Definition 3.2. The characteristic function, gX(ω) for ω ∈ R of the random variable X, is the
Fourier-Stieltjes transform of the cumulative distribution function FX(x), i.e.,

gX(ω) := E
[
eiωX

]
=

∫
R
eiωxdFX(x) =

∫
R
eiωxfX(x)dx. (3.1)

4. Numerical approximation

According to the definition of the characteristic function (3.1) for a specific random variable with
the density function f , we have

g(ω) =

∫
R
eiωxf(x)dx.

For fixed J , a function f ∈ L2 [a, b] can be approximated using B-Spline functions as

f(x) ≈ fP (x) =
∑
k

cJ,kφJ,k(x) = CTΦ(x), (4.1)

where φJ,ks are B-Spline bases, and C and Φ are vectors which their entries are cJ,ks and φJ,ks,
respectively.

Since f(x) rapidly decays to zero as x → ±∞, we truncate the infinite integration range to
[a, b] ⊂ R, without losing significant accuracy,

g(ω) =

∫
R
eiωxf(x)dx ≃

∫ b

a
eiωxf(x)dx.

Using relation (4.1), we get

g(ω) = CT

∫
R
eiωxΦ(x)dx ≃ CT

∫ b

a
eiωxΦ(x)dx.

Assume

Ψ(ω) =

∫ b

a
eiωxΦ(x)dx,

so we get

g(ω) = cTΨ(ω). (4.2)

Using a suitable collocation method we change the equation (4.2) to a system of Algebraic equation,
which can be solve to find the vector C. So the unknown function f , can be found using relation
(4.1).
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F. Nourian, M. Lakestani, S. Sabermahani, Y. Ordokhani

5. Numerical Example

Assume that asset price dynamics follow the GBM(Geometric Brownian Motion) process, where
the characteristic function is as [3]

gGBM (ω) = exp(−iωx− iw(r − q − 1

2
σ2)(T − t)− 1

2
σ2ω2(T − t)).

Let

S0 = 100, r = 0.1, q = 0, T = 0.1, σ = 0.25, (5.1)

we solve the problem for two strike price K = 80 and K = 120.
Table 1 and 2 show the absolute errors for different values of j and different orders of B-Spline

functions.

Table 1: The absolute errors for different values of j and different orders of B-Spline functions, with
parameters as in (5.1); K = 80; reference val.= 20.799226309.

- j = 4 j = 5
Linear B-Spline 1.1× 10−3 3.7× 10−6

Quadratic B-Spline 2.9× 10−3 8.2× 10−7

Cubic B-Spline 3.9× 10−4 3.09× 10−7

Table 2: The absolute errors for different values of j and different orders of B-Spline functions, with
parameters as in (5.1); K = 120; reference val.= 0.044577814.

- j = 4 j = 5
Linear B-Spline 6.7× 10−4 2.5× 10−5

Quadratic B-Spline 2.8× 10−5 2.4× 10−6

Cubic B-Spline 1.4× 10−5 2.5× 10−7
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Approximate solution of the local time M-fractional
Volterra integral equations of the second kind

Mousa Ilie, Ali Khoshkenar

Abstract. In the current article, the local time M-fractional Volterra integral equations are
presented and so the homotopy perturbation method is developed for solving time M-fractional
Volterra integral equations of the second kind. Convergence of this technique is proved. The
proposed method has been called M-fractional homotopy perturbation method (MFHPM). The
results obtained demonstrate the efficiency of the proposed method for the local time M-fractional
Volterra integral equations. Some numerical examples are presented to illustrate the proposed
approach.

1. Introduction

Definition 1.1. Given a function f : [a,∞) → R, a ≥ 0. Then local M-fractional integral of f
order α is defined by

MT α,β
a f(t) = Γ(β + 1)

∫ t

a

f(x)

x1−α
dx, (1.1)

where the integral is the usual Riemann improper integral, and α ∈ (0, 1) and β > 0 [1].
Consider the local time M-fractional Volterra integral equations, as the following

x(t) = y(t) + λMT α,β
a (K(t, s)x(s)), ∀α ∈ (0, 1), β > 0, (1.2)

where y and K are known functions, λ and a are constant and x, is an unknown function. Applying
the local time M-fractional integral definition on equation (1.2), results in

x(t) = y(t) + λ

∫ t

a

Γ(β + 1)K(t, s)x(s)

s1−α
ds, (1.3)

by changing the kernel as the following form

Kα,β(t, s) =
Γ(β + 1)K(t, s)

s1−α
, (1.4)

as the local time M-fractional Volterra kernel, and substituting (1.4) in (1.3), we derive

x(t) = y(t) + λ

∫ t

a
Kα,β(t, s)x(s)ds. (1.5)

Keywords: M-fractional integral; Time M-fractional Volterra integral equations; Homotopy perturbation method;
Theorem of convergence; .

AMS Mathematical Subject Classification [2010]: 45D99-65R20-34A08.
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Approximate solution of the local

According to equation (1.5), the operator form of MFVIEs (1.2), can be presented as follows

x = y + λKα,βx, ∀α ∈ (0, 1), β > 0, (1.6)

or
Lα
βx = (I − λKα,β)x = y. (1.7)

It is obvious that the local M-fractional Volterra integral equations of the second kind (1.2), are
changed into Volterra integral equations of the second kind, for α, β = 1.

Definition 1.2. Let’s consider λ = λ0, α = α0, β = β0, and (Lα0
β0
)−1 as an L2 a operator, exists

and satisfies
(Lα0

β0
)−1Lα0

β0
= Lα0

β0
(Lα0

β0
)−1 = I, (1.8)

then λ0 is called a regular value of the local M-fractional operator Kα0,β0 [2].

Theorem 1.3. If for a given α = α0, β = β0, and λ = λ0, the operator (Lα0
β0
)−1 exists, then it is

unique [2].

Proof. In a similar way to proof in reference [2, 3] proof is clear.

Theorem 1.4. If λ is a regular value of the local M-fractional fractional operator Kα,β, with inverse
the local M-fractional fractional operator (Lα

β)
−1, then for any L2 function y, Eq. (1.6) has a unique

L2 solution say x, satisfying see [4].
x = (Lα

β)
−1y. (1.9)

Proof. In a similar way to proof in reference [2, 3], proof is clear.

2. Local M-fractional homotopy perturbation method (MFHPM)

We construct the local M-fractional homotopy perturbation (MFHPM) as follows,

(1− p)[v(t, p)− y(t)] + p[v(t, p)− y(t)− λMT α,β
a (K(t, s)v(s, p))] = 0, ∀α ∈ (0, 1), β > 0, (2.1)

where p ∈ [0, 1] is an embedding parameter. We assume that solution of (2.1) is as the following

v(t, p) =

∞∑
n=0

vn(t)p
n = v0(t) + v1(t)p+ v2(t)p

2 + v3(t)p
3 + · · · . (2.2)

Substitution of (2.2) into Eq. (2.2), we drive

(1− p)

[ ∞∑
n=0

vn(t)p
n − y(t)

]
+ p

[ ∞∑
n=0

vn(t)p
n − y(t) −λMT α,β

a (K(t, s)
∞∑

n=0

vn(s)p
n)

]
= 0. (2.3)

Collecting terms of the same powers p in (2.3), we obtain

p0 : v0 (t) = y (t) , (2.4)

p1 : v1 (t) = λMT α,β
a (k (t, s) y (s)) =

(
λKα,βy

)
(t) ,

p2 : v2 (t) = λ2
MT α,β

a

(
k (t, s)M T α,β

a (k (s, s1) y (s1))
)
=

((
λKα,β

)2
y

)
(t) ,

...
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M. Ilie, A. Khoshkenar

Solving Eqs. (2.4) lead to, a solution of the local M-fractional Volterra integral equations (1.2) as
the following

x(t) = lim
p→1

v(t, p) = v0(t) + v1(t) + v2(t) + · · · = y(t) +
∞∑
n=1

((λKα,β)ny)(t). (2.5)

The operator form of Eq. (2.5), that is the solution of the local M-fractional Volterra integral
equation (1.2), can be as follows

x = y +

∞∑
n=1

(λKα,β)ny, (2.6)

where Eq. (2.6), is called the local M-fractional series for the solution x, of MFVIEs (1.2). And
also, the n-th approximate solution of MFVIE (1.2), can be as follows

xn(t) = y(t) +

n∑
i=1

((λKα,β)iy)(t).

3. The convergence of method

Theorem 3.1. (sufficient condition of convergence) The local M-fractional series (2.3), for
(Lα

β)
−1 converges strongly if ||λKα,β|| < 1, for a given α ∈ (0, 1) and β > 0.

Proof. In a similar way to proof in reference [2, 3], proof is clear.

Lemma 3.2. Kα,β, is a L2 local M-fractional Volterra operator for a given α, β and b > a, then∣∣∣∣(Kα,β
)n+1

(t, s)

∣∣∣∣ ≤
∥∥Kα,β

∥∥n+1

E

[(n− 1)!]
1
2

Kα,β
1 (t)Kα,β

2 (s) ,

where Kα,β
1 (t) =

[∫ s
a

∣∣Kα,β (t, s)
∣∣2ds] 1

2 , and Kα,β
2 (s) =

[∫ b
t

∣∣Kα,β (t, s)
∣∣2dt] 1

2 .

Proof. For α, β = 1, refer [4].

Theorem 3.3. If Kα,β, is a L2 local M-fractional Volterra operator for a given α, β the series
(1.9), converges strongly for all λ, to the inverse the local M-fractional operator of Kα,β.

Proof. In a similar way to proof in reference [2, 3], proof is clear.

Example 3.4. Consider the following the local M-fractional Volterra integral equation

x(t) = 2 + t2 +M T α,β
0 ((t− s)x(s)), ∀α ∈ (0, 1), β > 0. (3.1)

Where for α = 1 and β = 1, the exact solution of MFVIE (3.1), is as follows

x(t) = 4 cosh(t)− 2.

By the proposed M-fractional HPM approach, we read

x(t) = 2 + t2 +
t(α+1)

(
t2α2 + t2α+ 2α2 + 10α+ 12

)
Γ (β + 1)

α (α+ 1) (α+ 2) (α+ 3)

+
t(2α+2)

(
2t2α4 + 5t2α3 + 4t2α2 + 4α4 + t2α+ 34α3 + 106α2 + 144α+ 72

)
(Γ (β + 1))

2

2α(α+ 1)
2
(2α+ 1) (α+ 2)

2
(α+ 3) (2α+ 3)

+ · · · .
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Approximate solution of the local

lim
α,β→1

x(t) = 2.000000000 + 2.0000000000t2 + 0.166666667t4 + · · · .

According to Taylor expansion of x(t), clearly has seen that

lim
α,β→1

x(t) = 4 cosh(t)− 2.

This solution is the same exact solution of this MFVIE (3.1), for non-fractional case. In Figures 1,
the seventh-order approximate solution of Local M-fractional Volterra integral equation for different
Values α, β, and exact solution for α, β = 1 are plotted.

Figure 1: The 7th-order approximation of MFHPM for different Values α, β, and for α, β = 1,
versus exact solution of Non-fractional Volterra integral equation.

4. Conclusion

According to this study, the Volterra integral equation of the second kind is developed for the
local M-fractional integral equations and homotopy perturbation method is presented for local M-
fractional Volterra integral equations. The proposed method has been called the local M-fractional
homotopy perturbation method. It was successfully utilized to find an exact or approximate solution
of MFVIEs. Since for α, β = 1, MFHPM method is changed into the Neumann method, thus not
unexpected that local M-fractional HPM method has the same accuracy and efficiency as Neumann
method for Volterra integral equations of the second kind [4]. The results have confirmed this fact.
In this study, the norm ∥ · ∥2 is used.
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A fast numerical method for fractional ordinary differential
equations

Roghayeh Katani

Abstract. In this work, we propose and analyze an efficient numerical method for solving Caputo
fractional differential equations (FDE) with smooth solutions. Properties of the Caputo derivative
allow us to reduce the FDE into a weakly singular Volterra integral equation and then a numerical
scheme is developed for solving this Volterra type integral equation. The order of convergence of
the numerical method is O(h5). A numerical example is given to show that the numerical results
are consistent with the theoretical results.

1. Introduction

We consider a numerical method for solving the fractional differential equation

Dα
0 y(t) = f(t, y(t)), 0 < t < T,

y(k)(0) = y
(k)
0 , k = 0, 1, 2, . . . ⌈α⌉ − 1, (1.1)

where the y
(k)
0 may be arbitrary real numbers and α > 0. Here Dα

0 denotes the differential operator
in the sense of Caputo denoted by

Dα
0 y(t) =

1

Γ(n− α)

∫ t

0
(t− u)n−α−1y(n)(u)du, (1.2)

where n = ⌈α⌉ is the smallest integer α.
Existence and uniqueness of solution for (1.1) have been studied [1, 2, 7]. Numerical methods
for solving fractional differential equations have been considered by many authors for example
see [3–6]. In this paper by using properties of the Caputo derivative we reduce the FDE into
a weakly singular Volterra integral equation. Once this is done, a number of numerical schemes
developed for Volterra type integral equation can be applied to find numerical solution of FDEs.
For this purpose the total time is divided into a set of small intervals, and between each interval
the unknown function is approximated using quadrature rules and product integration. These
approximations are substituted into the transformed Volterra type equation to obtain a set of
algebraic system of equations. Solution of these systems provides the solution of the FDE.

Keywords: Fractional differential equations, Caputo differential operator, weakly singular integral equations.
AMS Mathematical Subject Classification [2010]: 65R20.
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A fast numerical method for FODEs

2. The numerical algorithm

It is well-known ( [2]) that the initial value problem described by (1.1) is equivalent to the Volterra
integral equation

y(t) =

⌈α⌉−1∑
k=0

y
(k)
0

tk

k!
+

1

Γ(α)

∫ t

0
(t− u)α−1f(u, y(u))du, 0 < t < T. (2.1)

In order to explain the numerical method, divide the time T into N equal parts, and let h = T/N
be the time interval of each part. The time at the grid points are given as tj = jh, j = 0, 1, . . . , N .
For given real numbers cj with 0 = c0 < c1 < · · · < c4 = 1, define the set Πn := {tn,j} of mesh
points by tn,j := tn + cjh, j = 0, 1, . . . , 4, n = 0, 1, . . . , N − 1 where cj =

j
4 . For simplicity we will

use the following notations y(tn,j) ≈ yn,j and f(tn,j , y(tn,j)) ≈ Fn,j . Discretization at each node
points tn,j leads to

y(tn,j) =

⌈α⌉−1∑
k=0

y
(k)
0

tkn,j
k!

+
1

Γ(α)

∫ tn,j

0
(tn,j − u)α−1f(u, y(u))du

=

⌈α⌉−1∑
k=0

y
(k)
0

tkn,j
k!

+
1

Γ(α)

n−1∑
i=0

∫ ti+1

ti

(tn,j − u)α−1f(u, y(u))du

+
1

Γ(α)

∫ tn,j

tn

(tn,j − u)α−1f(u, y(u))du. (2.2)

The first integral in above relation is approximated by using the two step Romberg quadrature rule,
then we can write ∫ ti+1

ti

(tn,j − u)α−1f(u, y(u))du ≈ h
4∑

i′=0

wi′(tn,j − ti,i′)
α−1Fi,i′ , (2.3)

where w0 = w4 = 7/90, w2 = 2/15, w1 = w3 = 16/45. The Romberg quadrature rule can not be
used for the second integral and we use product integration method, then we have∫ tn,j

tn

(tn,j − u)α−1f(u, y(u))du ≈
4∑

i′=0

Fn,i′

∫ tn,j

tn

(tn,j − u)α−1li′(u)du, (2.4)

where

li′(u) =
4∏

j′=0,j′ ̸=i′

u− tn,j′

tn,i′ − tn,j′
.

The right side integral in relation (2.4) can be calculated exactly, then substituting the approxima-
tions (2.3) and (2.4) in equation (2.2) yields

yn,j −
⌈α⌉−1∑
k=0

y
(k)
0

tkn,j
k!

− 1

Γ(α)

n−1∑
i=0

h
4∑

i′=0

wi′(tn,j − ti,i′)
α−1Fi,i′

− 1

Γ(α)

4∑
i′=0

Fn,i′

∫ tn,j

tn

(tn,j − u)α−1li′(u)du = 0, n = 0, 1, . . . , N − 1, j = 1, . . . , 4. (2.5)

Equations (2.5) then gives rise to a system of 4 algebraic equations which for nonlinear cases, can
be solved by using iterative methods such as Newton.
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3. Convergence analysis

Theorem 3.1. Assume that y(tn,j) is the exact solution of the fractional differential equation (1.1)
and yn,j be the approximate solution obtained by the method of this paper, then for sufficiently small
h, we have

∥ y(tn,j)− yn,j ∥∞−→ 0,

and the order of convergence is O(h5) when the function f has at least six order continuous derivative.

Proof. The results can be obtained by using a generalized discrete Gronwall lemma.

4. Numerical results

In this section, in order to test experimentally the convergence of the proposed method we consider
a test problem.

Example 4.1. Consider the initial value problem

D
1/2
0 y(t) = t2 − y(t) + t+

2√
π

√
t+

8

3
√
π
t3/2, t ∈ [0, 1],

y(0) = 0,

with exact solution y(t) = t2 + t.

Table 1 displays the absolute error and ratios of the errors for h = 0.2 and h = 0.1 at certain
mesh points. We observe that the ratios are more than 25 = 32 that indicating the theoretical
convergence order of at least h5.

Table 1: Numerical results of example 4.1.
t N = 5 N = 10 Ratio

0.1 1.4806e−06 4.2097e−8 35.17
0.2 4.1272e−06 8.9359e−8 47.79
0.3 3.9489e−06 9.3511e−08 42.22
0.4 4.3430e−06 1.2323e−07 35.24
0.5 6.2515e−06 1.5985e−07 39.11
0.6 1.7405e−05 5.1696e−07 33.66
0.7 2.3539e−05 6.3365e−07 37.15
0.8 5.8393e−05 1.6711e−06 34.94
0.9 6.3477e−05 2.0168e−06 31.47
1 6.5160e−05 1.9275e−06 33.81
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An interpolation-based method for the numerical solution
of multi-point boundary value problems

Nasibeh Karamollahi, Mohammad Heydari, Ghasem Barid Loghmani

Abstract. Two-point Taylor expansion as a certain case of Hermite interpolant is utilized to ap-
proximate the solution of multi-point boundary value problems. The properties of this interpolant,
in addition to the use of differential equation under consideration and its boundary conditions help
to reduce the computation of the solution to some algebraic equations.

1. Introduction

Multi-point boundary value problems (MBVPs) appear in the modeling of many situations in science
and engineering (see [1] and references therein). If a system is modeled by different differential
equations over subintervals of the main domain, then the solution should satisfy some conditions at
the boundaries of these subintervals. The result of such a model is a MBVP. Consider the second
order differential equation

y′′(x) = f
(
x, y(x), y′(x)

)
, 0 ≤ x ≤ 1, (1.1)

subject to one of the multi-point boundary conditions

y(0) =

m∑
i=1

αiy(ξi) + λ0, y(1) =

m∑
i=1

βiy(ξi) + λ1, (1.2)

y′(0) =

m∑
i=1

αiy
′(ξi) + λ0, y(1) =

m∑
i=1

βiy(ξi) + λ1, (1.3)

y(0) =

m∑
i=1

αiy(ξi) + λ0, y′(1) =

m∑
i=1

βiy
′(ξi) + λ1, (1.4)

y′(0) =
m∑
i=1

αiy
′(ξi) + λ0, y′(1) =

m∑
i=1

βiy
′(ξi) + λ1, (1.5)

where αi ∈ [0, 1), βi ∈ [0, 1), ξi ∈ (0, 1), λ0 and λ1 are constants. Also suppose that f in (1.1)
satisfies the sufficient conditions to guarantee the existence and uniqueness of the solution of the
problem. It should be noted that multi-point boundary conditions are not limited to conditions
(1.2)-(1.5).

The aim of this paper is to propose an efficient numerical method to approximate the solution
of second order differential equation (1.1) with certain multi-point boundary conditions of type

Keywords: Two-point Hermite interpolation, Multi-point boundary value problems.
AMS Mathematical Subject Classification [2010]: 65D05, 34B10.
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An interpolation-based method for multi-point problems

(1.2)-(1.5). For this purpose, a particular case of Hermite interpolation method, namely two-point
Hermite interpolation or two-point Taylor formula (TTF) is considered. This interpolation method
utilizes the values of a function and its derivatives up to an adequate order at the endpoints of the
domain to approximate the function. The needed data to construct the TTF approximation of the
solution of a multi-point boundary value problem can be extracted by using the structure of the
differential equation and its related boundary conditions.

2. The numerical method

The base of the numerical method proposed in this article, to approximate the solution of MBVPs,
is an explicit form of the two-point Hermite interpolant. This explicit form is presented in the
following theorem:

Theorem 2.1. [2] Suppose that y ∈ C2n[0, 1], then y can be approximated using the polynomial
interpolant

P2n−1(y;x) :=

n−1∑
i=0

(
y(i)(0)Cn,i(x) + (−1)iy(i)(1)Cn,i(1− x)

)
, (2.1)

where the basis functions Cn,i are defined by

Cn,i(x) :=
xi

i!
(1− x)n

n−i−1∑
j=0

(
n+ j − 1

j

)
xj , i = 0, 1, . . . , n− 1.

Furthermore, the error term of the approximation can be computed as

Rn (y;x) := y(x)− P2n−1 (y;x) =
y(2n)(ξx)

(2n)!
xn(1− x)n, ξx ∈ (0, 1).

Consider the second order differential equation (1.1) subject to multi-point boundary conditions
(1.2). We present the method for this case and the other cases can be described in the same manner.
If the values of a function and its first n− 1 derivatives at x = 0 and x = 1 are available, the TTF
approximation to this function can be constructed using (2.1). However, these values are unknown
when we try to approximate the unknown solution of problem (1.1)-(1.2). Therefore, we intend to
find a suitable way to estimate them. The available tools to achieve this goal are the differential
equation under consideration and its related boundary conditions. Indeed, we keep y(0), y(1), y′(0)
and y′(1) as unknowns and utilize (1.1) to compute y′′(0) and y′′(1) in this unknowns as

y′′(0) = f(0, y(0), y′(0)), y′′(1) = f(1, y(1), y′(1)). (2.2)

Moreover, differentiating (1.1) and utilizing (2.2) help to calculate y′′′(0) and y′′′(1) in terms of the
same unknowns as before. The same thing happens by two times differentiating (1.1) to calculate
y(4)(0) and y(4)(1). This process can be continued to calculate all the needed derivatives to obtain
(2.1). Indeed, for i = 2, 3, . . . , n − 1, all the values of y(i)(0) can be computed in two unknown
values y(0) and y′(0), and y(i)(1) can be obtained in unknowns y(1) and y′(1). Therefore, we should
construct a system of four algebraic equations and four unknowns y(0), y(1), y′(0) and y′(1) to
attain the needed data to construct (2.1) as the approximate solution of (1.1)-(1.2). To this end,
we can first substitute the approximation P2n−1(y;x) into the boundary conditions of the problem
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to get 
y(0) =

m∑
i=1

αiP2n−1(y; ξi) + λ0,

y(1) =

m∑
i=1

βiP2n−1(y; ξi) + λ1,

(2.3)

and then employ the residual function based on differential equation (1.1) which is defined by

Res(x) = P′′
2n−1(y;x)− f

(
x,P2n−1(y;x),P

′
2n−1(y;x)

)
,

and compose the following equations {
Res(x1) = 0,

Res(x2) = 0,
(2.4)

where x1, x2 ∈ (0, 1) are two arbitrary points. The solution of (2.3)-(2.4) as a system of four
equations and four unknowns provides ỹ(0), ỹ(1), ỹ′(0) and ỹ′(1) as the estimation of unknown
values y(0), y(1), y′(0) and y′(1), respectively. The obtained estimations can be used to approximate
the higher order derivatives of y at x = 0 and x = 1. Thus, the needed data to construct the TTF
approximation (2.1) are available and the approximate solution of (1.1)-(1.2) can be achieved.

3. An application

The models of most small size bridges include two support points (left hand-side of Figure 1).
These models can be formulated using a standard two-point boundary value problem. However, the
model of a large size bridge can be formulated by a MBVP, if it is arranged using more than two
supports (right hand-side of Figure 1) [3]. Two different types of conditions is possible near each
endpoint of the bridge. When the position of the bridge at the supporting points near x = 0 and
x = 1 is important for the designer, the suitable boundary conditions are (1.2). However, boundary
conditions (1.5) describe the situation in which the designer tries to control the angles of the bridge
at the supporting points near x = 0 and x = 1. Furthermore, boundary conditions (1.3) and (1.4)
demonstrate cases that the designer does not take the same approach at the endpoints of the bridge.
As an example, consider the MBVP [3]

y′′(x) +
(
x3 + x+ 1

)
(y(x))2 = g(x),

y(0) =
1

6
y

(
2

9

)
+

1

3
y

(
7

9

)
− 1

6
sin

(
14

81

)
,

y(1) =
1

5
y

(
2

9

)
+

1

2
y

(
7

9

)
− 7

30
sin

(
14

81

)
,

(3.1)

where g is calculated such that the exact solution of the problem is y(x) = 1
3 sin

(
x− x2

)
.

The proposed method is applied to approximate the solution of (3.1). All the results are obtained
by using Maple software on a Core(TM) i7 PC with 3.60 GHz of CPU and 8 GB of RAM. The
maximum absolute error (E∞) of the proposed TTF taking (x1, x2) =

(
2
9 ,

7
9

)
for different values of

n, and the used CPU time for each case are presented in Table 1. This table indicates the capability
and acceptable accuracy of the TTF for solving problem (3.1). The presented TTF can be applied
to approximate the solution of other practical MBVPs.
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Figure 1: Simple models of bridges.

n 5 10 15
E∞ 3.59e-05 8.02e-14 2.22e-20

CPU time (s) 0.110 0.593 0.656

Table 1: Results for problem (3.1).
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Numerical analysis application in virtual teaching with EJS
software

Maedeh GholamAzad, Amir Pishkoo

Abstract. As a result of social distancing measures implemented around the world in the aftermath
of the new coronavirus (COVID19) crisis, virtual educations have been forced to adjust their teach-
ing patterns, potentially shifting from traditional in-person teaching to online education or virtual
teaching (VT). A variety of methodologies and algorithms can be used to create VT. One of the
most important is numerical analysis. Numerical analysis is a branch of mathematics and computer
science concerned with developing, analyzing, and implementing numerical solutions to continuous
mathematics problems. This article provides methodologies and approaches for designing the VT
using various numerical analytic algorithms and the Easy Java Simulation (EJS) software.

1. Introduction

The new coronavirus (COVID19) epidemic has resulted in a significant reduction in student and
intern operational opportunities. Science and technology have advanced and innovated as a result
of this topic, and VT technology is evolving as time demands [1]. VT systems can be designed and
manufactured using a variety of designs and methods. For simulation and improved understanding,
EJS software is one of the most useful. The implementation language is EJS, which is one of the
most widely used programming languages today [2]. EJS is an open-source program that allows you
to create various simulations by inputting model equations and creating a graphical user interface
(GUI) for the program [3]. Due to the COVID19 pandemic, several colleges have incorporated this
type of tool to enhance their virtual courses in recent years. Face-to-face laboratory practice is
typically not available to students in scientific and technical subjects due to the distant learning
paradigm. As a result, distance learning processes require the usage of internet tools such as
VT [4]. Runge-Kutta (4), Euler, Euler-Richardson, and other key solvers derived from the numerical
analysis algorithm are included in EJS. The application of numerical analysis for the design of the
VT utilizing the EJS program is shown in this paper. To begin, a brief overview of the EJS
environment is provided. Following that, the EJS creates a simple physics example. The creation
of a simple pendulum utilizing the Runge-Kutta(4) is the subject of this section’s research.
The following is how the paper is structured: Section 2 discusses the current state of EJS and how
to create EJS apps using it. EJS’s creation of the simple pendulum is discussed in Section 3.

2. About Easy Java Simulations

EJS is a free Java authoring tool that assists non-programmers in creating interactive simulations
in Java or JavaScript, primarily for educational or learning reasons, and is a component of the Open

Keywords: Virtual Education, Numerical analysis, Algorithm, Easy Java Simulation.
AMS Mathematical Subject Classification [2010]: 65Sxx, 65S05, 65S99.
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Source Physics project [4]. Despite its user-friendly interface, EJS contains all of the capabilities
required for a full modeling cycle. Figure 1 depicts the main EJS environment.

Figure 1: The EJS user interface with annotations.

The right-hand taskbar has icons for clearing, opening, searching, and saving files, configuring EJS,
and displaying application information and help. It also has icons for running simulations and
packaging one or more simulations into a single file. Right-clicking on taskbar icons brings up
additional (but related) options that will be explained when needed.
EJS displays informational messages in the output section at the bottom of the interface. The work
panels, which are located in the center of the interface, are where the modeling is done.

3. Designing a simple pendulum

The model is defined in the Model work panel so that EJS can transform it into a program. We
investigate the motion of a basic pendulum in this simulation. You can alter the pendulum bob’s
mass, the length of the string, the acceleration due to gravity, and the pendulum’s initial position.
The pendulum’s motion as a function of time can then be observed.
Identifying, defining, and initializing the variables that represent the system is a good first step
when constructing a model.
We will use the Evolution panel frequently for models that are not based on ordinary differential

equations since it allows us to build Java code that determines what changes are occurring in time
(ODEs). The View is the third EJS work panel. This work panel enables us to develop a graphical
interface with minimal scripting that integrates visualization, user interaction, and program control.
The properties of image (the ODE with Runge-Kutta (4) solver) and the final simulation for the
simple pendulum created by the View work panel are shown in Figures 2 and 3, respectively.
It’s time to start the simulation by pressing the Run button on the taskbar. EJS creates and compiles
Java code, gathers auxiliary and library files, and runs the produced program. It’s all done with a
single mouse click. To ensure that the model is in a consistent state, running a simulation initializes
its variables and executes the fixed relations. When the user interface’s play/pause button is pushed,
the model’s time evolution begins. (When the simulation is paused, the play/pause button displays
the icon; when it is running, it displays the icon.) The software in our present example uses a
numerical method to advance the harmonic oscillator differential equation by 0.05 time units before
running the fixed relations code.
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Figure 2: The properties of image.

Figure 3: Final simulation of the simple pendulum.
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A new numerical algorithm for the fractional model of
human liver with new modified parameters

Hamed Ebrahimi, Jafar Biazar

Abstract. This paper investigates the dynamics of a fractional-order model of the human liver. The
proposed model is examined via quasi-hat functions (QHFs). Utilizing a method that incorporates
the operational matrices of QHFs is used to reduce the problem to several systems of two equations
with two unknowns. Finally, an illustrative example is provided to confirm the accuracy and
validity of the proposed scheme. We have studied the stability and convergence of the method for
this system. However, these aspects are not covered here.

1. Introduction

A phthalein dye called bromsulphthalein (BSP) is used in liver function tests. Determining the
rate of removal of the dye from the bloodstream gives a measure of liver function. [1]. In 2004,
an integer-order model of human liver was studied and solved by Celechovska [2]. The fractional
mathematical model of the dynamic behavior of liver function (couple system) with new parameters
is presented as follows:{

C
0 D

α
t u1(t) = −δsin(πα/2)u1(t) + εsin(πα/2)u2(t),

C
0 D

α
t u2(t) = δsin(πα/2)u1(t)− (εsin(πα/2) + φsin(πα/2))u2(t), 0 < α ≤ 1, t ∈ [0, T ] ,

(1.1)

with initial conditions u1(0) = λ, u2(0) = 0, and C
0 D

α
t is the Caputo fractional operator [1]. Figure

1 illustrates the flow of BSP between the blood u1(t), liver u2(t), and bile. Normal liver function;
not more than 5% of the dye should remain in the blood at the end of 45 min.

1.1. Definition of QHFs

These functions are established based on the idea of the hat functions [3]. Quasi-hat functions are
defined as follows for i even, and 0 ≤ i ≤ n:

ϕi(t) =

{
1

2h2 (t− (i+ 1)h)(t− (i+ 2)h), ih ≤ t < (i+ 2)h,
0, otherwise,

(1.2)

when i is odd, and 1 ≤ i ≤ n− 1:

ϕi(t) =

{
− 1

2h2 (t− (i− 1)h)(t− (i+ 2)h), (i− 1)h ≤ t < (i+ 1)h,
0, otherwise,

(1.3)

Keywords: Numerical algorithms; Fractional modeling; Human liver; Fractional operational matrix.
AMS Mathematical Subject Classification [2010]: 65Yxx, 37N25, 65D15.
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wherein n ≥ 2 is an even positive integer, h = T
n . An arbitrary function uv(t), can be approximated

by a linear combination of QHFs as the following:

uv(t) ≃
n∑

i=0

aviϕi(t) = Av
TΦ(t), Φ(t) = [ϕ0(t), ϕ1(t), ..., ϕn(t)]

T ,

Av = [av0, av1, ..., avn]
T , avi = uv(ih), i = 0, ..., n, v = 1, 2. (1.4)

1.2. Fractional order integral operator

Here, the Riemann-Liouville integral operator of order α is expressed, as well as its property [3]:

Iαt u(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1u(τ)dτ, Iαt (

C
◦ D

α
t u(t)) = u(t)−

n−1∑
i=0

u(i)(0)
ti

i!
, n− 1 < α ≤ n.

Theorem 1.1. Let uv(t) and Φ(t) be given by (1.4) and α > 0, then

Iαt Φ(t) ≃ QαΦ(t), Iαt uv(t) ≃ AT
v Q

αΦ(t), (1.5)

where Qα is the (n + 1) × (n + 1) operational matrix of fractional integration of order α in the
Riemann–Liouville integral sense as follows:

Q(α) =
hα

2Γ(α+ 3)



0 ρ1 ρ2 ρ3 ρ4 ... ρn−1 ρn
0 σ1 σ2 σ3 σ4 ... σn−1 σn
0 0 0 ρ1 ρ2 ... ρn−3 ρn−2

0 0 0 σ1 σ2 ... σn−3 σn−2

0 0 0 0 0 ...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 ... ρ1 ρ2
0
0

0
0

0
0

0
0

0
0

...
σ1
0

σ2
0


, (1.6)

where

ρ1 = α (2α+ 3) , ρk =
(
kα+1(2k − 3α− 6) + 2kα(α+ 1)(α+ 2) + (k − 2)α+1(2− 2k − α)

)
,

σ1 = 4(α+ 1), σk = (k − 2)α+1(2k + α− 2)− 2(k − 2)α(2 + α)(1 + α)− (k)α+1(2k − 6− 3α),

k = 2, 3, ..., n.

Proof. Take into account the coefficient of Qα = [θ]ij , which is the value of Iαt ϕi(t) at the jh point,
i = 0, 1, j = 0, ..., n. some simple manipulations completes the proof.

2. Description of numerical algorithm based on QHFs

In order to obtain numerical solutions of Eqs. (1.1) using QHFs, by applying (1.2)-(1.4) and
substitution (1.5)-(1.6) into Eqs. (1.1) results in

A1
T − λET + δsin(πα/2)A1

TQα − εsin(πα/2)A2
TQα = 0,

A2
T − δsin(πα/2)A1

TQα + (εsin(πα/2) + φsin(πα/2))A2
TQα = 0, 0 < α ≤ 1, t ∈ [0, T ] ,
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Table 1: Comparison between QHFs, and generalized Mittag–Leffler function method (GMLFM)
for u1(t), u2(t) with Clinical data, α=1.

Times The amount of BSP in blood: u1(t) The amount of BSP in liver: u2(t)

t Clinical data [2] GMLFM [1] QHFs; h=0.5 Clinical data [2] GMLFM [1] QHFs; h=0.5
0 250 250 250 0 0 0
5 184 192.24 191.95 65.8 56.35 56.68
10 141 151.36 150.96 106.5 93.6406 94.09
20 98 101.44 101.04 141.5 132.65 133.09
30 80 75.71 74.99 148.3 145.11 145.92
43 64 68.09 57.58 − − −

wherein E = [1, 1, ..., 1]T . This system has the dimension 2(n + 1) × 2(n + 1). Suppose Qα =
[θ]ij , i, j = 0, ..., n,. As shown in the operational matrix (1.6), and based on the initial values, we
have the following Algorithm:
Step 1 : Inputs, n (even), α, T, Qα = [θ]ij , i, j = 0, ..., n, u1(0) = λv, u2(0) = 0.
Step 2 : Set and solve recursive algebraic system k, (2× 2) k = 1, 3, ..., n− 1.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a10 = λ, a20 = 0.
for k = 1 : (2) : n− 1
Solution of the kth (2× 2) system k, determines the unknown parameters.

systemk :


a1k + δsin(πα/2)

[
k∑

i=0
θika1i

]
− εsin(πα/2)

[
k∑

i=0
θika2i

]
− λ = 0,

a2k − δsin(πα/2)
[

k∑
i=0

θika1i

]
+ (εsin(πα/2) + φsin(πα/2))

[
k∑

i=0
θika2i

]
= 0,

and we can get

a1k+1 = −δsin(πα/2)
[
k+1∑
i=0

θik+1a1i

]
+ εsin(πα/2)

[
k+1∑
i=0

θik+1a2i

]
+ λ,

a2k+1 = δsin(πα/2)
[
k+1∑
i=0

θik+1a1i

]
− (εsin(πα/2) + φsin(πα/2))

[
k+1∑
i=0

θik+1a2i

]
,

end

Step 3 : Get avi and determine uv(t) ≃
n∑

i=0
aviϕi(t), v = 1, 2, i = 0, ..., n.

3. Simulation results and discussion

The numerical results (at different α) are presented in Table 1 and Figure 1 for T = 60. The values
of the parameters are selected as δ = 0.054736 , ε = 0.0152704 , φ = 0.0093906 , and λ = 250
based on a realistic analysis in [2]. The relative error for u1(t) at the end of 43 min with α=1 and
α = 0.98 are 0.1003 and 0.0320, respectively.
Conclusion: The dynamic behavior of this model via QHFs confirmed the behavior of clinical
data. Based on this method, the liver and similar problems can be derived as n/2 algebraic systems
involving two equations and two unknowns. Compared with the classic model with α = 1, the
model with α = 0.98 gives more realistic results.
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A fractional model of human liver with new modified parameters
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Figure 1: The QHFs solutions for α = 0.98, h = 0.5 and Clinical data (Left: two plots), Flow scheme
of the human liver math model (Right).
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An efficient method for solving the system of generalized
Abel integral equations in three unknowns

Sayed Arsalan Sajjadi, Hashem Saberi Najafi, Hossein Aminikhah

Abstract. In this paper, we consider the product integration method for solving the system of
generalized Abel integral equations in three unknowns. This is a mixed system of first kind Volterra
integral equations with singular kernels. Finally, some numerical examples with smooth and non-
smooth solutions are provided to test the efficiency of method.

1. Introduction

Systems of singular integral equations appear in many branches of scientific fields such as microscopy,
seismology, radio astronomy, electron emission, atomic scattering, radar ranging, plasma diagnostics,
X-ray radiography and optical fiber evaluation [6]. The general ideas and the essential features of
these systems are of wide applicability [6]. In this paper, we consider the following system of Abel’s
generalized singular integral equations in three unknowns from [6]

g1(x) =

∫ x

0

(
(x− t)−β11u(t) + (x− t)−β12v(t) + (x− t)−β13w(t)

)
dt,

g2(x) =

∫ x

0

(
(x− t)−β21u(t) + (x− t)−β22v(t) + (x− t)−β23w(t)

)
dt,

g3(x) =

∫ x

0

(
(x− t)−β31u(t) + (x− t)−β32v(t) + (x− t)−β33w(t)

)
dt,

, x ∈ I := [0, T ], (1.1)

where the singular kernels (x − t)−βij (1 ≤ i, j ≤ 3) and the continuous functions gj (1 ≤ j ≤ 3)
are given real-valued functions. The functions u(t), v(t) and w(t) are unknowns which should be
determined. Also, 0 < βij < 1 (1 ≤ i, j ≤ 3) and gj(0) = 0 (1 ≤ j ≤ 3). We assume that

det

(x− t)−β11 (x− t)−β12 (x− t)−β13

(x− t)−β21 (x− t)−β22 (x− t)−β23

(x− t)−β31 (x− t)−β32 (x− t)−β33

 ̸= 0 in order to guarantee the existence and unique-

ness of solution of (1.1) (see [6]).
In [6], the system (1.1) is examined using the Laplace transform method. The existence and

uniqueness solution of the system (1.1) can be related to Theorem 6.1.14 from [2]. It’s known that
a first kind Volterra integral equation is an example of an ill-posed problem [2]. One of the most
powerful ways for dealing with poorly behaved integrands is product integration [4]. The solutions
of (1.1) maybe have singularity at the lower bound of the domain of integration. To deal with
this non-smooth behavior, we use the product integration method to numerical solution of (1.1).
Finally, we provide three numerical examples with smooth and non-smooth solutions to test the
accuracy and efficiency of the presented method.

Keywords: Numerical solution, Singular integrals, Integral equations, ill-posed, Product integration.
AMS Mathematical Subject Classification [2010]: 45F15, 45Dxx.
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Solving the system of Abel integral equations

2. Algorithm of method

The first kind Chebyshev polynomial TN (x) is defined by the following relation

TN (x) = cos(N cos−1(x)),

and satisfy in the following recursion relation [5]

TN (x) = 2xTN−1(x)− TN−2(x), N = 2, 3, .....,

with
T0(x) = 1, T1(x) = x.

The orthogonality of these polynomials with respect to the weight function w(x) = (1− x2)(−
1
2
) as

follows

∫ 1

−1
TM (x)TN (x)w(x)dx =


0, M ̸= N,
π
2 , M = N ̸= 0,

π, M = N = 0.

The Chebyshev Gauss quadrature points are given by [3]

zj = − cos

(
(2j + 1)π

2N + 2

)
, j = 0, . . . , N.

The Gauss quadrature formula∫ 1

−1
f(x)w(x)dx ≈ f(z0)w0 +

N∑
j=1

f(zj)wj ,

is exact for any polynomial of degree ≤ 2N + 1.
We use the Lagrange interpolating polynomial to approximate u(t), v(t) and w(t), as

ICN (u(t)) =

N∑
j=0

lj(t)u(zj), (2.1)

ICN (v(t)) =
N∑
j=0

lj(t)v(zj), (2.2)

ICN (w(t)) =

N∑
j=0

lj(t)w(zj), (2.3)

where

li(t) =
N∏

j=0,j ̸=i

t− zj
zi − zj

, i = 0(1)N,

and define

Wijhk =

∫ zi

0
(zi − t)−βhk lj(t)dt, j = 0(1)N, i = 0(1)N, 1 ≤ h, k ≤ 3.
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Now, similar to the Nyström method [1], approximating the integrals of system (1.1), we have

g1(x) =

N∑
j=0

W11u(zj) +

N∑
j=0

W12v(zj) +

N∑
j=0

W13w(zj),

g2(x) =
N∑
j=0

W21u(zj) +
N∑
j=0

W22v(zj) +
N∑
j=0

W23w(zj),

g3(x) =

N∑
j=0

W31u(zj) +

N∑
j=0

W32v(zj) +

N∑
j=0

W33w(zj), x ∈ I := [0, T ] (2.4)

To find the solutions at the node points, let x run through the quadrature points zi(i = 0(1)N).
This yields the following linear system

g1(zi) =

N∑
j=0

W11u(zj) +

N∑
j=0

W12v(zj) +

N∑
j=0

W13w(zj),

g2(zi) =
N∑
j=0

W21u(zj) +
N∑
j=0

W22v(zj) +
N∑
j=0

W23w(zj),

g3(zi) =

N∑
j=0

W31u(zj) +

N∑
j=0

W32v(zj) +

N∑
j=0

W33w(zj), i = 0(1)N. (2.5)

The above system is a system of 3(N +1) equations with same number of unknowns. Solving (2.5),
we obtain the values of u(zj), v(zj) and w(zj).

3. Numerical examples

In this section, we present some examples to illustrate the validity of the presented method in
section 2. We get the numerical results by Wolfram Mathematica 12.2.
Example 3.1. Consider the following system of Abel’s generalized singular integral equations [6]
with smooth solutions

g1(x) =

∫ x

0

(
(x− t)−1/2u(t) + (x− t)−1/2w(t)

)
dt,

g2(x) =

∫ x

0

(
(x− t)−2/3v(t) + (x− t)−2/3w(t)

)
dt,

g3(x) =

∫ x

0

(
(x− t)−3/4u(t) + (x− t)−3/4v(t)

)
dt, x ∈ I := [0, 1], (3.1)

where g1(x), g2(x) and g3(x) are chosen such that u(t) = 1, v(t) = t and w(t) = t2.
Example 3.2. Consider the following system of Abel’s generalized singular integral equations [6]
with smooth solutions

g1(x) =

∫ x

0

(
(x− t)−2/3u(t) + (x− t)−2/3w(t)

)
dt,

g2(x) =

∫ x

0

(
(x− t)−3/4v(t) + (x− t)−3/4w(t)

)
dt,

g3(x) =

∫ x

0

(
(x− t)−2/5u(t) + (x− t)−2/5v(t)

)
dt, x ∈ I := [0, 1], (3.2)
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Solving the system of Abel integral equations

where g1(x), g2(x) and g3(x) are chosen such that u(t) = 1 + 2t + 3t2, v(t) = 1 − 2t − 3t2 and
w(t) = 1 + 2t− 3t2.

Example 3.3. Consider the following system of Abel’s generalized singular integral equations with
non-smooth solutions

g1(x) =

∫ x

0

(
(x− t)−1/2u(t) + (x− t)−1/2v(t) + (x− t)−2/3w(t)

)
dt,

g2(x) =

∫ x

0

(
(x− t)−3/4u(t) + (x− t)−1/2v(t) + (x− t)−2/5w(t)

)
dt,

g3(x) =

∫ x

0

(
(x− t)−2/3u(t) + (x− t)−1/4v(t) + (x− t)−1/2w(t)

)
dt,

x ∈ I := [0, 1], (3.3)

where g1(x), g2(x) and g3(x) are chosen such that u(t) =
√
t, v(t) = sin(

√
t) and w(t) = t1/3.

Tables 1, 2 and 3 contain the maximum errors for examples 3.1, 3.2 and 3.3, respectively. Figs.
1, 2 and 3 represent the error behaviors of the calculated solutions, corresponding to the examples
3.1, 3.2 and 3.3, respectively, at the grid points for N = 12.

Table 1: The obtained maximum errors ||u − uN ||∞, ||v − vN ||∞ and ||w − wN ||∞ by presented
mathod for Example 3.1.

N 2 4 8 16 32 64

||u− uN ||∞ 0.0000329838 0.0000108216 1.106453× 10−6 1.115676× 10−8 1.14464× 10−12 1.22125× 10−14

||v − vN ||∞ 0.0000355824 0.0000114222 1.135019× 10−6 1.121844× 10−8 1.13143× 10−12 1.37668× 10−14

||w − wN ||∞ 0.0000329812 0.0000108213 1.106450× 10−6 1.115677× 10−8 1.12677× 10−12 1.17684× 10−14
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Figure 1: Plot of obtained errors |u − uN |, |v − vN | and |w − wN | by the presented method with
N = 8 for Example 3.1.
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Table 2: The obtained maximum errors ||u − uN ||∞, ||v − vN ||∞ and ||w − wN ||∞ by presented
mathod for Example 3.2.

N 2 4 8 16 32 64

||u− uN ||∞ 0.0000880819 0.0000309938 3.19274993× 10−6 3.1946375× 10−8 3.2081× 10−12 6.1284× 10−14

||v − vN ||∞ 0.0000880818 0.0000309938 3.19274991× 10−6 3.1946371× 10−8 3.24629× 10−12 8.5709× 10−14

||w − wN ||∞ 0.0000810976 0.0000294374 3.11977989× 10−6 3.178955× 10−8 3.21156× 10−12 8.1394× 10−14
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Figure 2: Plot of obtained errors |u − uN |, |v − vN | and |w − wN | by the presented method with
N = 8 for Example 3.2.

Table 3: The obtained maximum errors ||u − uN ||∞, ||v − vN ||∞ and ||w − wN ||∞ by presented
mathod for Example 3.3.

N 2 4 8 16 32 64

||u− uN ||∞ 0.0201987 0.0112029 0.00601395 0.00314132 0.00161014 0.000816218

||v − vN ||∞ 0.0157754 0.010693 0.00552607 0.00338234 0.00312386 0.00262143

||w − wN ||∞ 0.0356525 0.0227428 0.0144483 0.00910235 0.00569364 0.00354716

4. Conclusion

In this paper, we used the product integration method to the numerical solution of Abel’s generalized
singular integral equations in three unknowns. The accuracy and efficiency of the presented method
were tested by providing some numerical examples with smooth and
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Figure 3: Plot of obtained errors |u − uN |, |v − vN | and |w − wN | by the presented method with
N = 8 for Example 3.3.
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Some boundary value problems on the Heisenberg Lie
groups

Abdolrahman Razani, Farzaneh Safari

Abstract. The Heisenberg Lie groups are the simplest example of Carnot groups. It has a broad set
of applications in many sciences such as quantum mechanics, ergodic theory, representation theory
of nilpotent Lie group, foundation of abelian harmonic analysis and theory of partial differential
equations. The existence of solutions of some boundary value problems in the Heisenberg Lie groups
is proved via variational methods.

1. Introduction

The Heisenberg group historically originates in and still has its strongest ties to quantum physics:
there it is a group of unitary operators acting on the space of states induced from those observable
on a linear phase space, a simplistic vector space which are given by linear or by constant func-
tions. So any Heisenberg group is a subgroup of a group of observable in certain simple examples
of quantum mechanical systems.
As important topics where the Heisenberg group reveals itself as an essential factor are quantum
mechanics, ergodic theory, representation theory of nilpotent Lie group, foundation of abelian har-
monic analysis, and theory of partial differential equations where we are interested in the last one.
We start with introducing notations and some definitions ( See more details in [2–8] and references
therein).
Thought this note, Hn is the Heisenberg Lie group which has R2n+1 as a background manifold and
endowed with the following noncommutative law of product

(x, y, t) ◦ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + 2(⟨y|x′⟩ − ⟨x|y′⟩)),

where x, x′, y, y′ ∈ Rn, t, t′ ∈ R and ⟨ | ⟩ denotes the standard inner product in Rn. We denote by
|.|Hn Korányi norm with respect to the parabolic dilation δλξ = (λx, λy, λ2t); i.e.

|ξ|Hn = (|z|4 + t2)
1
4 = ((x2 + y2)2 + t2)

1
4 ,

for z = (x, y) ∈ R2n and ξ = (z, t) ∈ Hn. A Korányi ball of center ξ0 and radius r is defined by

BHn(ξ0, r) = {ξ : |ξ−1 ◦ ξ0|Hn ≤ r},

and it satisfies the following equalities

|BHn(ξ0, r)| = |BHn(0, r)| = rQ|BHn(0, 1)|,

Keywords: Heisenberg Lei groups, Laplacian operator.
AMS Mathematical Subject Classification [2010]: 35R03.
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Some boundary value problems on the Heisenberg Lie groups

where |U | denotes the (2n+1)-dimensional Lebesgue measure of U and Q = 2n+2 is homogeneous
dimension of Hn. The Heisenberg gradient is given by

∇Hn = (X1, X2, . . . , Xn, Y1, Y2, . . . , Yn),

where
T =

∂

∂t
, Xi =

∂

∂xi
+ 2yi

∂

∂t
, Yi =

∂

∂yi
− 2xi

∂

∂t
, i = 1, 2, 3, . . . , n.

are vector fields that constitute a basis for the real Lie algebra of left-invariant vector fields on Hn.
For any horizontal vector field function X = X(ξ), X = {xiXi + x′iYi}ni=1, of class C1(Hn,R2n), we
define the horizontal divergence of X by

divHnX :=
n∑

i=1

[Xi(xi) + Yi(x
′
i)].

Definition 1.1. (Horizontal curve) A picewise smooth curve y : [0, 1] → Hn is called a horizontal
curve if ẏ(t) belongs to the span of {Xi, Yi}ni=1 a.e. in [0, 1]. The horizontal length of y is defined
as follows

LHn(y) =

∫ 1

0

√
(ẏ(t), ẏ(t))Hndt =

∫ 1

0
|ẏ(t)|Hndt,

where

(X,Y )Hn =
n∑

i=1

(xiyi + x′iy
′
i),

for each X = {xiXi + x′iYi}ni=1 and Y = {yiXi + y′iYi}ni=1.

Carnot-Carathéodory distance of two points ξ1, ξ2 ∈ Hn is defined by

dcc(ξ1, ξ2) = inf{LHn(y) : y is a horizontal curve joining ξ1, ξ2 in Hn}.

Notice that according to Chow-Rashevsky theorem, for any two arbitrary points ξ1, ξ2 ∈ Hn, there is
a horizontal curve between them in Hn, then the above definition is well-defined. dcc is left invariant
metric on Hn and homogeneous of degree 1 with respect to dilations δλ, that is

dcc(δλ(ξ1), δλ(ξ2)) = λdcc(ξ1, ξ2).

for all ξ1, ξ2 ∈ Hn. We denote by dξ the Haar measure on Hn that coincides with the (2n + 1)-
Lebesgue measure, since the Haar measures on Lie groups are unique up to constant multipliers.

Here, we recall Hardy’s inequality on Heisenberg group stablished in [9, Theorem 1.1].

Lemma 1.2. Let 1 < p < Q and u ∈ C∞
0 (Hn). Then∫

Hn

|∇Hnu|pdξ ≥ (
Q− p

p
)p
∫
Hn

|u|p

dpcc
dξ.

As usual, for any measurable set Ω ⊂ Hn, n ≥ 1, we denote by Lp(Ω) the canonical Banach
space, endowed with the norm

|u|p =
( ∫

Ω
|u|pdξ

) 1
p .
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A. Razani, F. Safari

Also, the first-order Heisenberg Sobolev space on Ω is defined as follows

HW 1,p(Ω) := {u ∈ Lp(Ω) : |∇Hnu| ∈ Lp(Ω)},

endowed with the norm
∥u∥1,p = |u|p + |∇Hnu|p,

and we set HW 1,p
0 (Ω) = (C∞

0 (Ω), ∥u∥1,p) equipped with the norm

∥u∥p = |∇Hnu|p.

It is well-known Lp(Ω), HW 1,p(Ω) and HW 1,p
0 (Ω) are separable, reflexive Banach space.

Definition 1.3. (Poincaré-Sobolev domain) An open set Ω of Hn is said to be a Poincaré-Sobolev
domain, if there exist a bounded open set U ⊂ Hn, with Ω ⊂ Ω̄ ⊂ U , a covering {B}B∈F of Ω by
Carnot-Carathéodory balls B and numbers N > 0, α ≥ 1 and ν ≥ 1 such that

(i)
∑

B∈F 1(a+1)B ≤ N1Ω in U , where 1D is the characteristic function of a Lebesgue measurable
subset D.

(ii) there exists a (central) ball B0 ∈ F such that for all B ∈ F there is a finite chain B0, B1, . . . , Bs(B),
with Bi ∩Bi+1 ̸= ∅ and

|Bi ∩Bi+1| ≥
max{|Bi|, |Bi+1|}

N
, i = 0, 1, . . . , s(B)− 1

and moreover, B ⊂ νBi for i = 0, 1, . . . , s(B).

The next result is a special case of Theorem 1.3.1 in [1].

Theorem 1.4. (i) Let Ω be a bounded Poincaré-Sobolev domain in Hn and let 1 ≤ p ≤ Q. Then
the embedding

HW 1,p
0 (Ω) ↪→↪→ Lσ(Ω)

is compact for all σ, with 1 ≤ σ < p∗, where p∗ = pQ
Q−p is the critical Sobolev exponent related

to p.

(ii) The Carnot-Carathéodory balls are Poincaré-Sobolev domains.

Remark 1.5. Combining Theorem 1.4, with the fact that the Carnot-Carathéodory distance and the
Korányi distance are equivalent on Hn, we get the following embedding is compact

HW 1,p
0 (Ω) ↪→↪→ Lσ(Ω) for 1 ≤ σ < p∗,

when Ω is a Korányi ball and 1 ≤ p ≤ Q. Furthermore, there exists Cσ > 0 such that

|u|σ ≤ Cσ ∥u∥p for 1 ≤ σ ≤ p∗,

for all u ∈ HW 1,p
0 (Ω).

Remark 1.6. From Hardy inequality mentioned in Lemma 1.2, since the Carnot-Carathéodory dis-
tance and the Korányi distance are equivalent on Hn, we gain the following inequality∫

Ω
|∇Hnu|pdξ ≥ (

Q− p

p
)p
∫
Ω

|u|p

|ξ|pHn

dξ,

for 1 < p < Q and u ∈ HW 1,p
0 (Ω) where Ω is a Korányi ball. For convenience, we set H = (Q−p

p )p

and so we deduce that ∫
Ω

|u|p

|ξ|pHn

dξ ≤ 1

H

∫
Ω
|∇Hnu|pdξ.
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Some boundary value problems on the Heisenberg Lie groups

2. Main results

Here, we bring some problems on the Heisenberg groups to show the importance of Heisenberg
groups in PDEs. The first one is a generalized Heisenberg p-Laplacian problem

−∆Hn ,pu+R(ξ)|u|p−2u = f(u)− g(u) ξ ∈ Ω,
u > 0 ξ ∈ Ω,
u = 0 ξ ∈ ∂Ω,

in which ∆Hn ,pu = divHn(|∇Hnu|p−2∇Hnu) is Heisenberg p-Laplacian operator which comes from
nonlinear phenomena specially in physics: rheology, glacelogy, radiation of heat, plastic moulding
etc. We can find enough conditions for f and g such that this problem has at least one weak
solution. The next one is a (p, q)-Laplacian problem

−divHn(|∇Hnu|p−2∇Hnu)− divHn(|∇Hnu|q−2∇Hnu) + |u|γ−2u
|ξ|γHn

= λf(ξ, u), ξ ∈ Ω,

u = 0, ξ ∈ ∂Ω,

where f is a Carathéodory function with a growth condition and we can find enough conditions
for the existence and multiplicity of solutions to this problem. We would like to point out that
usually solutions to (p, q)-Laplacian problems are the steady state solutions of the reaction diffusion
systems. Reaction-diffusion systems are mathematical models which correspond to several physical
phenomena. This system has a wide range of applications in physics and related sciences like
chemical reaction design, biophysics, plasma physics, geology, and ecology. This equations also
arise in the study of solation-like solutions of the nonlinear Schrödinger equation as a model for
elementary particles for example waves in a discrete electrical lattice.
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Numerical method for distributed-order time-fractional
sub-diffusion equations

Tahereh Eftekhari, Jalil Rashidinia

Abstract. In this paper, an efficient method for solving time-fractional sub-diffusion equations
of distributed-order is presented. An error bound for the new method is obtained. Numerical
experiments illustrate the efficiency of the proposed method.

1. Introduction

In the present research, we discuss time-fractional sub-diffusion equations (TFSDEs) of distributed-
order with initial and Dirichlet’s boundary conditions, presented in the following form:

C
0 D

σ(µ)
t u(s, t) =

∂2

∂s2
u(s, t) + g(s, t), (1.1)

u(s, 0) = a(s), u(0, t) = b0(t), u(1, t) = b1(t), (1.2)

where, g is a known function, C
0 D

σ(µ)
t is the distributed-order derivative in the Caputo sense, and

σ(µ) denotes the distribution of order µ ∈ (0, 1), such that σ(µ) ≥ 0 and
∫ 1
0 σ(µ)dµ = L > 0. Also,

(s, t) ∈ Ω× T , where Ω = (0, 1), and T = (0, tf ].
In recent years, numerical methods for solving fractional differential equations of distributed-

order have attracted the attention of a large number of researchers. For a review on numerical
techniques, see for instance [1–5] and references therein.

2. Preliminaries

2.1. The HBPSLs
The HBPSLs are defined as follows:

θn,m(t) =

{
Lm

(
2k

tf
t− 2n+ 1

)
, n−1

2k−1 tf ≤ t < n
2k−1 tf ,

0, otherwise,
(2.1)

for n = 1, 2, . . . , 2k−1, m = 0, 1, . . . ,M − 1. Here Lm(t) =
m∑
l=0

ηl,mtl, t ∈ [−1, 1] is the Legendre

polynomial of degree m and

ηl,m = 2m
(

m
l

)(
m+l−1

2
m

)
.

Keywords: Distributed order fractional derivative, Sub-diffusion equations, Hybrid functions.
AMS Mathematical Subject Classification [2010]: 26A33, 65N35.
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Numerical method for distributed-order time-fractional ...

2.2. Function approximation

A function u(s, t) ∈ L2(Ω× T ) can be approximated in terms of HBPSLs as follows

u(s, t) ≃ uk1,M1,k2,M2(s, t) =
2k1−1∑
n=1

M1−1∑
j=0

2k2−1∑
n′=1

M2−1∑
m′=0

ûn,m,n′,m′θn,m(s)θn′,m′(t) = Θ(s)T ÛΘ(t),

where

ûn,m,n′,m′ =

∫ 1
0

∫ tf
0 u(s, t)θn,m(s)θn′,m′(t)ω(ϕ,φ)(s)ω(ϕ,φ)(t)dtds∫ 1

0

∫ tf
0 θ2n,m(s)θ2n′,m′(t)dtds

,

and Û , Θ(s), Θ(t) are defined by

Û =


û1,0,1,0 û1,0,1,1 . . . û1,0,2k2−1,M2−1

û1,1,1,0 û1,1,1,1 . . . û1,1,2k2−1,M2−1
...

... . . . ...
û2k1−1,M1−1,1,0 û2k1−1,M1−1,1,1 . . . û2k1−1,M1−1,2k2−1,M2−1

 ,

Θ(s) =
[
θ1,0(s), . . . , θ1,M1−1(s), . . . , θ2k1−1,0(s), . . . , θ2k1−1,M1−1(s)

]T
,

Θ(t) =
[
θ1,0(t), . . . , θ1,M2−1(t), . . . , θ2k2−1,0(t), . . . , θ2k2−1,M2−1(t)

]T
.

3. The method of solution for TFSDEs of distributed-order

In this section, using the new method gives

1

2

N∑
q=1

wqσ

(
εq + 1

2

)(
Θ̂(s, 2)

T
Υ̂Θ̂(t,

1− εq
2

)− s

(
Θ̂(1, 2)

T
Υ̂Θ̂(t,

1− εq
2

)

)

+(1− s)C0 D
εq+1

2
t b0(t) + sC0 D

εq+1

2
t b1(t)

)
−Θ(s)T Υ̂Θ̂(t, 1)− d2

ds2
a(s)− g(s, t) ≃ 0. (3.1)

where Θ̂ is operational vector for the Riemann-Liouville integral operator of fractional order based
on HBPSLs [1], which for a sake of briefness we will not able to explain them in detail.

Now we collocate the obtained equation at

sn1 =
2n1 − 1

2k1M1
, tn2 =

2n2 − 1

2k2M2
tf , n1 = 1, 2, . . . , 2k1−1M1, n2 = 1, 2, . . . , 2k2−1M2. (3.2)

By the “fsolve” command of Maple 2018, we solve the above system and then the unknown Υ̂ can
be determined. Finally, an approximate solution for (1.1), (1.2) can be obtained.

4. Error bound

Theorem 4.1 (see [1]). Let u ∈ C(2M+2) (Ω× T ). Suppose that u(s, t) is the exact solution of (1.1),
(1.2) and uk,M (s, t) is its approximate solution obtained by the HBPSLs method. Also, let ∥σ∥2 ≤ γ.
Therefore, we have the following error bound of HBPSLs method for the modified equation:∥∥EM

k

∥∥
2
≤ L

√
tf

2(k−1)MM !
, (4.1)

where L is a positive constant.
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5. Illustrative examples

Here, one problem is presented and solved by our proposed method using Maple 2018 software.
Also, we consider k1 = k2 = 1, N = 8, Ω × T = (0, 1) × (0, 1], and obtain the absolute errors,
L∞−errors by

max
n1=0,1,...,2k1−1M1,

n2=0,1,...,2k2−1M2

{|u(sn1 , tn2)− uk1,M1,k2,M2(sn1 , tn2)|} ,

respectively, where sn1 and tn2 are defined in (3.2).
Example 5.1. Consider the following TFDE of distributed-order [4]:∫ 1

0
Γ (4− µ) C0 D

µ
t u(s, t)dµ =

∂2

∂s2
u(s, t) +

s sin(s)t2(t ln t+ 6t− 6)

ln t
− 2t3 cos(t),

u(s, 0) = u(0, t) = 0, u(1, t) = t3 sin(1),

with u(s, t) = t3s sin(s).
In Table 1, the L∞−error is reported, for the methods of HBPSLs and CPs [4]. This table

illustrates the accuracy of the HBPSLs method.
Table 1: Comparison of the L∞−errors, for Example 5.1.

M1 = M2 = n = m HBPSLs CPs [4]
1 6.558298e− 3 3.142e− 1
3 7.193385e− 6 3.469e− 3
5 6.667064e− 8 8.382e− 6
7 1.188375e− 10 1.275e− 8
9 2.010265e− 13 1.020e− 11
11 1.400000e− 15 3.709e− 14
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RBF-FD method for a fractional inverse problem

Fatemeh Taghipour, Ahmad Shirzadi

Abstract. In this paper, a local meshless method is applied to the inverse source problem of
distributed order time fractional diffusion equation. A first-order finite difference approach is sug-
gested for discretizing temporal variable. Then, the resulting equations are fully discretized by a
radial basis function-generated finite difference (RBF - FD) based method.

1. Introduction

Distributed-order derivatives have proven their applicability on several phenomana. The numeri-
cal approximation of the distributed-order time fractional diffusion equation was studied in many
papers [1,2]. However, there are still few studies related to inverse source problems for distributed-
order time fractional diffusion equations. In this paper, we consider the following distributed time-
fractional diffusion equation with the given initial and Dirichlet boundary conditions:

D
w(α)
t u(x, t) = ∆u(x, t) + F (x, t), x = (x, y) ∈ Ω ⊂ R2, t ∈ [0, T ], (1.1)

u(x, 0) = u0(x), x ∈ Ω (1.2)

u(x, t) = g(x, t), x = (x, y) ∈ ∂Ω, t ∈ [0, T ], (1.3)

where g and u0 are given sufficiently smooth functions and D
w(α)
t is time-fractional derivative

of distributed order and defined by D
w(α)
t u(x, t) =

∫ 1
0 w(α)

c
0D

α
t u(x, t)dα. w : [0, 1] −→ R is a

continuous non-negative weight function, with conditions
∀α ∈ [0, 1], ω(α) > 0 and

∫ 1
0 w(α)dα = W where W is a positive constant and c

0D
α
t is the Caputo

fractional derivative. If the source term F (x, t) can not be directly observed, it hence becomes
unknown and then, we consider the additional condition∫

Ω
w(x)u(x, t)dx = ψ(t), t ∈ [0, T ], (1.4)

where w(x) is a given weight function. Suppose further that

F (x, t) = f(x, t)r(t), (x, t) ∈ Ω× [0, T ], (1.5)

Keywords: Inverse source problem, Distributed-order time fractional equation, Fractional diffusion equation, Radial
basis function, Finite difference.
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RBF-FD method for a fractional inverse problem

where f(x, t) represents the known source function component and r(t) is an unknown time-
dependent coefficient that is sought. If w(x) = δ(x− x∗), then (1.4) becomes

u(x∗, t) = ψ(t). (1.6)

If we consider Eq. (1.1) and (1.5), with additional condition as Eq. (1.6), then the distributed
order derivative of Eq. (1.6) is in the form D

ω(α)
t u(x∗, t) = D

ω(α)
t ψ(t). Then we get Dω(α)

t u(x∗, t) =
∆u(x∗, t) + r(t)f(x∗, t). We rewrite the recent relation as

r(t) =
D

ω(α)
t u(x∗, t)−∆u(x∗, t)

f(x∗, t)
.

By replacing r(t) in D
ω(α)
t u(x, t) = ∆u(x, t) + r(t)f(x, t), we obtain:

D
ω(α)
t u(x, t) = ∆u(x, t) +H(x, t)∆u∗ +K(x, t), (1.7)

where H(x, t) = − f(x,t)
f(x∗,t)

, k(x, t) =
D

ω(α)
t u(x∗,t)f(x,t)

f(x∗,t)
and ∆u∗ = ∆u(x∗, t). In the following section

present an RBF − FD approach to numerically solve the above equation.

2. Discretization of the governing equation

To discretize the integral term in Equation (1.7), the Gauss-Legendre integration rule is used as∫ 1

−1
f(x)dx =

n∑
j=1

υjf(xj), ∀f(x) ∈ C∞[−1, 1], where xjs are roots of Legendre polynomial Pn(x)

and υjs are the weights. So, Eq. (1.7) becomes:
q∑

s=1

υsw(αs)
c
0D

αs
t u(x, t) = ∆u(x, t) +H(x, t)∆u∗ +K(x, t). (2.1)

A discretization of the time interval [0, T ] is considered as {t0, t1, . . . , tN}, where tn = nτ and
τ = T

N , n = 0, 1, . . . , N. As described in [3], the following finite difference scheme is used for
discretizing the fractional derivative:

c
0D

α
t u(x, tn) =

1

Γ(1− α)

∫ tn

0
(tn − t)−α∂u(x, t)

∂t
dt (2.2)

=
τ−α

Γ(2− α)

[
a0u

n −
n−1∑
k=1

(ak−n−1 − ak−n)u
k − an−1u

0

]
.

where al = (l + 1)1−α − l1−α.
Considering Eq. (1.7) at the point (x, y) and time instant tn, and substituting (2.2) in (2.1), we
obtain

q∑
s=1

υsω(αs)
τ−αs

Γ(2− αs)

[
aαs
0 un −

n−1∑
k=1

(aαs
k−n−1 − aαs

k−n)u
k − aαs

n−1u
0

]
(2.3)

= ∆un +Hn∆un∗ +Kn

where un = u(x, tn). To describe the RBF-FD scheme, consider a set of N scattered nodes
x1, . . . ,xN and the fractional differential operator L. For a given node, x1, the objective is to
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approximate Lu(x1) as a linear combination of the values of u at the N scattered nodes, i.e.,

Lu(x1) ≈
N∑
i=1

αiu(xi). To determine the weighting cofficients αi, a local set of nodal points, called

an stencil with n nodes and a set of basis functions ϕi(x), i = 1, . . . , n. In a local set, considering

Lϕj(xi) =

n∑
i=1

βiϕj(xi) j = 1, 2, . . . , n, a local system of n linear equations of n unknowns will be

obtained. This system gives an equation corresponding to xi and finally a system of N equations
with N unknown will be obtained. Solving this system of equations, the coefficients αi will be
obtained.

3. Test problem

Consider the following inverse source problem of the time-fractional diffusion equation:
∫ 1

0
Γ(3− α)c0D

α
t u(x, y, t) = ∆u(x, y, t) + r(t)f(x, y, t), 0 < x, y < 1, 0 ≤ t ≤ 0.8

u(x, y, 0) = 0,

(3.1)

where r(t) = 2( t−1
ln t + t), f(x, y, t) = t sin(x) sin(y). The exact solution of the above problem is

u(x, y, t) = t2 sin(x) sin(y). Table 1 present the RMS error vrsus the number of nodal points with
four different values of time step τ . To see the accuracy of the method, the numerical results
corresponding to u(x, y, t) and r(t) are present in Figure 1.

Table 1: RMS error for Test problem at time instant T = 0.8.
h τ = T

128 τ = T
256 τ = T

512 τ = T
1024

1/8 2.0897× 10−4 9.4207× 10−5 4.2804× 10−5 1.9586× 10−5

1/16 1.6108× 10−4 7.2616× 10−5 3.2994× 10−5 1.5097× 10−5

1/32 7.8930× 10−5 3.5582× 10−5 1.6167× 10−5 7.3974× 10−6

1/64 5.1258× 10−5 2.3292× 10−5 1.0660× 10−5 4.9098× 10−6
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Efficient algorithms to solve nonlinear Volterra integral
equations of the first kind

Roya Montazeri, Jafar Biazar

Abstract. In this research, A new approach based on an alteration of usage of Optimal Homotopy
Asymptotic Method (OHAM), is introduced that applies (OHAM) in multistage, let us call it, in
short, as (MOHAM). This procedure is utilized to derive an approximate solution to nonlinear
Volterra integral equations of the first kind (NVIEFK). To illustrate these approaches one example
is presented. The results confirm the efficiency and ability of these methods for such equations.
The results will be compared to find out which method, is more accurate. Advantages of applying
MOHAM are also illustrated.

1. Introduction

The Volterra integral equations of the first kind appear in mathematical models of many phenomena
in different disciplines and engineering branches such as the vehicular traffic, population dynamics,
fluid dynamics, heat conduction problems, the kinetic theory of gases and economics [1, 4].
The sample equation under study is as the following.∫ t

a
K (t, u)H (ψ (u)) du = g (t) , a ≤ u ≤ t ≤ b. (1.1)

Considering the nonlinear term as the following

H (ψ (t)) = ϑ (t)

The canonical form of NVIEFK is as the following

ϑ (t) = f (t)−
∫ t

a
K (t, u)ϑ (u) du, a ≤ t ≤ b, (1.2)

where ϑ is a function to be determined, f ∈ l2 ([a, b]), and K ∈ l2 ([a, b]× [a, b]).
In recent years, NVIEFK has been solved by several authors such as Erfanian and Mostahsan by
an optimization method [5], Ma et. al used Sinc Nyström method [6], Singh et. al applied Haar
wavelet method [7], and some others.
Now we propose the OHA and the MOHA methods for NVIEFK.

Keywords: Optimal homotopy asymptotic method (OHAM), Multistage optimal homotopy asymptotic method
(MOHAM), Volterra integral equations of the first kind.

AMS Mathematical Subject Classification [2010]: 65D07, 65K05.
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MOHAM for numerical solution of NVIEFK

2. The OHAM and MOHAM applications

These two approaches are well defined in [2,3]. We are going to apply OHAM to the Volterra integral
equation of the first kind. Applying the OHAM to Eq. (1.2), results in the following sequential
equations

q0 : ϑ0 (t) = f (t) ,

q1 : ϑ1 (t) = ω1 ∫ t0K (t, u)ϑ0 (u) du,

...

qk : ϑk (t) = (1 + ω1)ϑk−1 (t) +
k−1∑
i=2

ωiϑk−i (t) +
k∑

l=1

ωl

∫ t

0
K (t, u)ϑk−l (u) du.

An approximation of the mth order is considered by

ϑ̃ (t, ω1, ω2, . . . , ωm) = ϑ0 (t) +
m∑
k=1

ϑk (t, ω1, ω2, . . . , ωm) . (2.1)

Substitution of Eq. (2.1) in Eq. (1.2), gives the following residual

J (t, ω1, . . . , ωm) = ϑ̃ (t)− f (t) +

∫ t

a
K (t, u) ϑ̃ (u) du , a ≤ t ≤ b.

By least-squares technique, we find optimal values of ωi, i = 1, 2, . . . ,m. An approximate solution
of order m, is determined, when the parameters ωi, i = 1, 2, . . . ,m, are known.
In MOHAM, by partitioning the time interval, [0, T ], into N subintervals [0, t1), . . . , [tγ−1, tγ ], where
tγ = T and OHAM will be applied over each subintervals. The solution at the last point, in each
subinterval, denotes an initial approximation to the solution, over the next interval. The process
will continue until we achieve the pre-assigned time, T .

3. Numerical Experiments

Here, we are going to demonstrate the ability of the OHA and MOHA methods by one illustrative
example. Also compare the results of OHA and MOHA methods will be compared and computations
will be performed by Matlab Package.

Example 3.1. In this example we study the following equation∫ t

0
et−uln (ψ (u)) du = et − t− 1, 0 ≤ t ≤ 1.

The exact solution is ψ (t) = et. By the new function ϑ (u) = ln (ψ (u)) and resolving the canonical
form, one has,

ϑ (t) = et − 1−
∫ t

0
et−uϑ (u) du, 0 ≤ t ≤ 1,

where ψ (u) = eϑ(u).
The solutions of the first and second orders, in order by MOHA and OHA methods and the exact
solution are shown in Table 1, and Figure 1 A.E of OHA and MOHA methods are plotted in Figure
2.
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t

Figure 1: Exact and solutions by OHA and
MOHA methods.

| OHAM solution - Exact solution |
| MOHAM solution - Exact solution |

Figure 2: Presentation of A.E of OHA and
MOHA methods.

Table 1: Exact and solutions by OHA and MOHA methods.
tj Exact OHAM A.E. OHAM MOHAM A.E. MOHAM

0.0 1.00000000 1.00000000 0.00000000 1.00000000 0.00000000
0.1 1.10517091 1.10636693 0.00119602 1.10474466 0.00042625
0.2 1.22140275 1.22617980 0.00477705 1.22124851 0.00015424
0.3 1.34985880 1.36031132 0.01045252 1.35026852 0.00040972
0.4 1.49182469 1.50920420 0.01737951 1.49230448 0.00047979
0.5 1.64872127 1.67259169 0.02387042 1.64743849 0.00128278
0.6 1.82211880 1.84912703 0.02700823 1.82187478 0.00024402
0.7 2.01375270 2.03591953 0.02216683 2.01330065 0.00045205
0.8 2.22554092 2.22799618 0.00783915 2.22503445 0.00050647
0.9 2.45960311 2.41774538 0.04185773 2.45951469 0.00008815
1.0 2.71828182 2.59445603 0.12382582 2.71962653 0.00134471

4. Conclusion and discussion

In the present study, NVIEFK have been solved using OHA and MOHA methods. Comparison with
OHAM results higher accurate respect of applying MOHAM, especially for the nods further from
the initial point. The numerical experiments support this claim, figures are plotted to show the
comparison between approximate and the exact solutions with of these experiments. Furthermore,
MOHAM is reliable and effective for to obtain approximate solutions of the NVIEFK.
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Easy Java simulations software for numerical modeling

Amir Pishkoo, Maedeh GholamAzad

Abstract. “Easy Java simulations” is an application software for performing physical simulations.
“Photoelectric effect” simulation is an example of simulation in EJS software. To perform this sim-
ulation in the introduction section, first, the three main work panels of the program are introduced.
We have used Figure 1 as background (from the reference on page 117 of the Physics textbook
(3), 12th grade, Mathematics and Physics, 3rd year of secondary education at high school in Iran,
Chapter 5: Introduction to atomic physics), and using EJS turned the image of an experiment into
a virtual experiment (executable Jar file). This Jar file is the final product of this research ,while
in the main results section, we explain the details of our work.

1. Introduction

Computer simulation is inextricably linked to computer modeling. A model is a mental represen-
tation of a physical system and its properties, and modeling is the process by which we create
them. A computer simulation is a model implementation that allows us to test the model under
various scenarios in order to learn more about its behavior. Easy Java/Javascript Simulations is
a modeling tool that allows scientists, not just computer scientists, to create simulations in a va-
riety of programming languages. Easy JavaScript Simulations is a free open-source tool that has
acquired a significant role in physics instruction, with over a thousand simulations available in the
ComPADRE digital library [1, 2].

To tackle simulation challenges, a variety of softwares are utilized, including

• MATLAB is a bundle of coding, modeling, and simulation tools produced by MathWorks.

• COMSOL Multiphysics is a multi-physical simulation pioneer and the most powerful simula-
tion software available.

• GAMS is a coding and mathematical optimization high-level modeling system.

• If the primary goal of the simulation is to visualize the problem and instructional objectives,
the Easy Java Simulations (EjsS) application is an excellent choice for the user.

EjsS automates tasks such as animation and numerical solution of ordinary differential equations.
There are three modeling workpanels in Easy Java/Javascript Simulations [3, 4]. To create the
model and its graphical user interface, we use a series of workpanels provided by the program.

Keywords: Simulation of ODE models, numerical modeling, animation.
AMS Mathematical Subject Classification [2010]: 65Y04, 34C60, 81T80.
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2. EJS and three main workpanels

Working with EJS, we typically perform tasks such as selecting a numerical algorithm, specifying a
differential equation or writing problem-solving codes and commands to run simulations, designing
view elements that generate motion and animation.

The first panel, Description, allows us to build and modify a multimedia HTML-based narrative
that describes the model.

The second work panel, Model, focuses on the modeling process. This panel is used to create
model-specific variables, initialize them, and create algorithms that describe how the model changes
over time.

The third work panel, View, is in charge of creating the graphical user interface (GUI) that
allows users to manage and view the simulation’s results. This program replicates Hertz’s discovery
of the photoelectric phenomenon [5] in 1887, which Einstein theoretically characterized in 1905. A
metal is illuminated by a specific frequency of light (and energy) Fig.1.

Electrons are ejected and can produce a current if the frequency (energy) of the light is greater
than the metal’s work function, W. (which is shown in milliAmperes). If the energy of the light
is greater than the workfunction, these photoelectrons will have kinetic energy. Electrons can be
prevented from reaching the plate and current from flowing in a circuit if they are exposed to an
electric potential.

3. Main results

In this simulation, the items of light waves (sine waves), electrons (set of particles), material button,
and galvanometer must be designed and built. When the play/pause button on the user interface
is pressed, the model’s time evolution begins.

Figure 1: Experimental setup of photoelectric effect: snapshot of the final product of this research
as a Jar file.

When you click on the Evolution panel, as shown in Fig.2, the ODE editor appears. The step
size is determined by the increment. By advancing the state in discrete stages, numerical techniques
approximate the exact ODE solution. Each view element has a set of internal attributes known as
properties that govern how it appears and behaves.

T
he

9t
h

Se
m

in
ar

on

Numerical Analysis and
its

A
pplications

٧٩



A. Pishkoo, M. GholamAzad

Figure 4: creating set of particles (electrons).

Figure 2: time evolution of the problem.

By double-clicking on the element in the tree, we can access the properties inspector table and
change these attributes. A model variable can also be used to set an element’s property (Fig.3,
Fig.4, and Fig.5). The ability to connect (bind) a property to a variable without programming is
critical for converting our static representation into a dynamic and interactive one.

Figure 3: making Sine waves (light).
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Figure 5: changing material button.
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A reduced-order difference potential algorithm based on
POD method for parabolic interface problem

Mahboubeh Tavakoli Tameh, Fatemeh Shakeri

Abstract. We present a rapid and effective method for the numerical solution of the parabolic
equation in domains with interfaces. The proposed approach combines the difference potentials
method (DPM) with the proper orthogonal decomposition (POD) technique to improve the com-
putational efficiency of the DPM. Numerical results confirm the efficiency and accuracy of the
developed numerical method.

1. Introduction

The difference potentials method (DPM) is an efficient and strong technique for solving interface
problems and problems defined on domains with complex geometry. This method was proposed
by V. Ryaben’kii in 1969 and is a discrete counterpart of Calderon’s potential theory in functional
analysis [2, 3]. It combines some advantages of the boundary element method (BEM) and finite
difference method (FDM) while avoids some drawbacks related to them. The advantages are the
effectiveness of FDM in simple geometries and the dimension reduction of BEM . The avoided
drawbacks by this method include the difficulty of FDM to handle the complex regions, and the
requirement of BEM to the fundamental solution and evaluating singular integral kernels. In DPM,
first the value of the solution is calculated at the discrete grid boundary (the grid points close to
the boundaries of the original domains) by constructing pseudo-differential boundary equations [1].
Then, these values are used in the discrete generalized Green’s formula to obtain the values of the
solution in the original domain. The purpose of this paper is combining the second-order difference
potentials method and the POD technique to improve the computational efficiency of DPM for
solving the parabolic equations.

We consider the following parabolic interface problem

∂u

∂t
+

∂2u

∂x2
= f, (x, t) ∈ Ω× (0, T ], (1.1)

with initial condition as
u(x, 0) = u0(x), x ∈ Ω, (1.2)

boundary condition on the points x = a and x = b as

u(a, t) = α(t), u(b, t) = β(t), (1.3)

Keywords: Difference potentials, Calderon’s operators, Interface problems.
AMS Mathematical Subject Classification [2010]: 35Exx, 65M06, 82B24 .
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and interface condition at ζ as

u(ζ, t)|Ω1
− u(ζ, t)|Ω2

= ϕ1(t), t ∈ (0, T ], (1.4)
ux(ζ, t)|Ω1

− ux(ζ, t)|Ω2
= ϕ2(t), t ∈ (0, T ], (1.5)

where Ω := [a, b] ⊂ R is a bounded domain separated by interface point ζ into two disjoint subdo-
mains Ω1 := [a, ζ) and Ω2 := (ζ, b]. The source function f is piecewise smooth but can have a jump
along the interface, hence the solution of this problem may be discontinuous along ζ.

2. DPM algorithm

In this section, we describe the main steps of the algorithm based on DPM for governing interface
problem. The details of DPM strategy are represented in [1, 3].

• Step 1: For each subdomain Ωe, e ∈ {1, 2} introduce an Auxiliary domain Ω0
e and formulate

the Auxiliary Problem.

• Step 2: Disceritize the Auxiliary Problem by the finite difference schemes (first-order in time
and second order in space) as L∆t,h[u

n+1
i ] = Fn+1

i , xi ∈ N+.

• Step 3: At each time level tn+1, for each subdomain Ωe, calculate a Particular Solution,
un+1
i := G∆t,hF

n+1
i as the solution of the Auxiliary Problem.

• Step 4: Compute un+1
γe wich is the solution at the discrete grid boundary γe (the grid points

close to the interface) by solving the coupled system of Boundary Equations with Projections
(BEP).

• Step 5: Calculate the Difference Potential PN+
e
un+1
γe from the obtained un+1

γe in the previous
step.

• Step 6: Finally, approximate the solution using the generalized Green’s formula u(xi, t
n+1) ≈

PN+
e
un+1
γe +G∆t,hF

n+1
i .

3. A POD based reduced-order difference potential method

The POD method offers an orthogonal basis for representing a given data set. It is helpful to reduce
the dimensions of the numerical computational models for time-dependent PDEs and save CPU time
for large-scale scientific computing. Here, we use this technique to improve the efficiency of the DPM
algorithm for solving the parabolic equation. We briefly represent the steps of POD-DPM as bellow

• Step 1: Find the solution sequence {uni }Ln=1 from the first steps of Particular Solutions
{uni }Nn=1, (1 ≤ i ≤ m,L << N), where m and N are the number of space and time steps,
respectively.

• Step 2: Then, formulate the snapshot matrices A = (uni )m×L and calculate the eigenvalues
λ1 ≥ λ2 ≥ ... ≥ λr > 0, where r = rank(A), and the eigenvectors ϕk (k = 1, ..., r) of AtA.

• Step 3: Select the number M (M < r) such that
√

λM+1 ≤ ε for the error tolerance ε =
O(∆t,∆x2). Then construct the POD basis Φ = (φ1, φ2, ..., φM ), where φk = Aϕk/

√
λk(k =

1, 2, ...,M).
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• Step 4: Then, obtain the POD-DPM by replacing un in the definition of Particular Solution
with u∗n = Φθn (n = L+ 1, ..., N) where θn are vectors yet to be determined.
Similar to the theorem represented in [4], the following theorem can be proved.
Theorem 3.1. The following relation is hold for the error between the Particular Solution
un from DPM and the u∗n from the POD-DPM∥∥un − u∗

n∥∥
2
≤ E(n)

√
λM+1, n = 1, ..., N,

where E(n) = 1 (n = 1, ..., L) and E(n) = exp(n− L) (n = L+ 1, ..., N).

• Step 5: Check accuracy and update POD basis to continue. If E(n)
√

(λM+1) ≤ ε the
requirement accuracy is satisfied, else set u1 = u∗(n−L), ..., uL = u∗(n−1) and go back to Step
2.

4. Numerical results

In this section, we present a numerical example to show the performance and accuracy of the
proposed method for solving the parabolic interface problem. We consider Ω = [−0.5, 0.5] and ζ = 0.
Also, we select the Auxiliary domains Ω0

1 = [−0.7, 0.2] and Ω0
2 = [−0.2, 0.7] for subdomains Ω1 and

Ω2, respectively. Also, we set L = 10, final time T = 6 and time step size equal 0.001. Designed
algorithm is implemented with MATLAB R2018a running on a desktop with Intel(R) Core(TM) i5-4200M
CPU @ 2.50GHz 2.50 GHz and 6 GB memory. The exact solution of this example as studied in [1] is given
by

u(x, t) =

{
x8 exp (−t), −0.5 ≤ x ≤ 0,
1
2 (

1
256 + x8)exp(−t), 0 ≤ x ≤ 0.5,

(4.1)

Table 1: The error and convergence rate of DPM and POD-DPM.

N Error(DPM) order Error(POD-DPM) order
40 7.6509e− 08 ∗ 7.1902e− 08 ∗
80 1.9535e− 08 1.9696 1.8185e− 08 1.9833
160 5.0469e− 09 1.9526 4.6280e− 09 1.9743
320 1.3214e− 09 1.9333 1.2088e− 09 1.9368

Table 2: Comparison between CPU time obtained of DPM and POD-DPM.

N DPM POD-DPM
160 5.147186 1.672115
320 17.099635 2.277276
640 73.871677 3.574449
1280 435.560937 6.816560

Since the exact solution is known, we calculate the source term, Dirichlet boundary conditions and
interface jump conditions on the interface ζ = 0 according to the given exact solution. The grid refinement
analysis and computational time of DPM and POD-DPM are reported in Tables 1 and 2. We see that the
numerical results of POD-DPM are in excellent agreement with those of DPM. Also, by comparing the CPU
time of the POD-DPM with that of the DPM, the advantages of POD-DPM in computational efficiency can
be found.

T
he

9t
h

Se
m

in
ar

on

Numerical Analysis and
its

A
pplications

٨۴



A reduced-order difference potential algorithm based on POD

References

[1] J. Albright, Y. Epshteyn, K.R. Steffen, High-order accurate difference potentials methods for parabolic
problems, Applied Numerical Mathematics, 93 (2015) 87–106.

[2] A.A.E. Reznik, Approximation of the potential surfaces of elliptic operators by difference potentials.
Doklady Akademii Nauk, 263 (1982) 1318–1321.

[3] V.S. Ryaben Kii, Method of difference potentials and its applications, Springer Science & Business Media,
2001.

[4] B. Xu, X. Zhang, A reduced fourth-order compact difference scheme based on a proper orthogonal de-
composition technique for parabolic equations. Boundary Value Problems, (2019) no. 130.

Mahboubeh Tavakoli Tameh
Faculty of Mathematics and Computer Sciences, Amirkabir University of Technology (Tehran Polytechnic),
Tehran, Iran.
email address: Mh.Tavakoli@aut.ac.ir

Fatemeh Shakeri
Faculty of Mathematics and Computer Sciences, Amirkabir University of Technology (Tehran Polytechnic),
Tehran, Iran.
email address: F.Shakeri@aut.ac.ir

T
he

9t
h

Se
m

in
ar

on

Numerical Analysis and
its

A
pplications

٨۵



The 9th Seminar on Numerical Analysis and its Applications

9-11 May 2022, University of Guilan, Rasht, Iran

Feedback solution for high-nonlinear
Hamilton-Jacobi-Bellman equation by a pseudospectral

domain decomposition technique

Mehdi Ghasemi, Homa Shirmardi, Mohammad Maleki

Abstract. In this paper, we present a new pseudospectral scheme for solving a class of high-
nonlinear optimal control problems. First of all, the Hamilton-Jacobi-Bellman equation is for-
mulated. Then, we approximate the cost functional using the method of pseudospectral. The
operational matrix of differentiation and the Gauss method are then utilized to reduce the optimal
control problem to the solution of algebraic equations.

1. Introduction

Optimal control is one of the most important branches of the mathematics. For nonlinear systems
the optimal state feedback control is obtained by the Hamilton-Jacobi-Bellman (HJB) equation
[1]. This equation is difficult to solve, thus approximation techniques for obtaining solutions are
important. In addition to linear systems, the nonlinear systems are also very important, because
they are applicable in industry, say, in reactor systems, flight control systems and aircraft design [2].
In the year 2000, an upwind method for approximating the viscosity solutions of HJB is presented by
Wang et al. [3]. Their method is based on an explicit finite difference scheme, the stability of method
under some mild conditions is proved. Huang et al. [4] proposed a semi-meshless discretization
scheme based on radial basis functions for approximating viscosity solutions of HJB.

2. HJB equation

A vast amount of literature exists on optimal control problems of the Bolza form

min
u∈U

J(s,x, u) =
Tf∫
s
L(t,y(t), u(t))dt+ h(y(Tf ))

s.t. ẏ(t) = f (t,y(t), u(t)) , t ∈ (s, Tf ], y(s) = x,
(2.1)

where u(·) is the control function, y(·) is the state function, L(·) is the running cost, h(y(Tf ))
is the terminal cost, f(·) is the vector-valued transition function, g(·) is the integrand function,
(s, x) ∈ [0, Tf ) × Rn, and U is the set of admissible controls. We introduce the value function v
defined by v(s,x) = inf

u∈U
J(s,x, u) using dynamic programming approach, the problem (2.1) can be

formulated as HJB equation plus its terminal term condition

−vs + sup
u∈U

(−vx · f (s,x, u)− L(s,x, u)) = 0, (2.2)

Keywords: Nonlinear optimal control, Pseudospectral method, Hamilton-Jacobi-Bellman, Feedback solution.
AMS Mathematical Subject Classification [2010]: 49J20, 65M70.
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v(Tf ,x) = h(x), (2.3)
where v(·) is the value function, h(x) is terminal condition and · stands for inner product. Here,
we have two unknown functions, u(·) and v(·). The control u which achieves minimum is called
optimal control, which we show it by u∗, if we could find a relation of the form u∗(t) = g (t,x(t))

2.1. Approximation by interpolation

Let −1 = τ0, τ1, . . . , τN = 1 be N + 1 distinct nodes in [−1, 1], and lk(x), k = 0, . . . , N be the

Lagrange interpolation polynomials based on this nodes, which are defined as lk(x) =
N∏

j=0,j ̸=k

x−τj
τk−τj

with the Kronecker property lk(τj) = δkj . The polynomials lk(x), k = 0, . . . , N form a basis
for the space of the polynomials of degree less than or equal to N . A function f(x) defined on

[−1, 1] may be approximated by Lagrange interpolation polynomials as f(x) =
N∑
k=0

f(τk)lk(x). The

above approximation can be written in the following matrix form f(x) ≃ ΦT
N (x)f where f =

[f(τ0), . . . , f(τN )]T and ΦN (x) = [φ0(x), . . . , φN (x)]T . From the Kronecker property, we conclude
ΦN (τj) = ej , j = 0, . . . , N where ej is the jth column of the identity matrix of dimension N + 1.

τj = cos

(
πj

N

)
, j = 0, . . . , N (2.4)

3. The proposed Hybrid method

Theorem 3.1. Consider the problem (2.2)-(2.3) in one dimensional case, then solution can be
written as:

v(s, x) ≃ ΦT
n (s)vΦm(x), (3.1)

which Φn and Φm are as follows Φn(s) =


l1(s)
l2(s)
...
ln(s)

 , Φm(x) =


l1(x)
l2(x)
...
lm(x)

 where li is ith Lagrange

function. By differentiating with respest to s and x, we will have

vs(s, x) = ΦT
n (s)DnvΦm(x), (3.2)

vx(s, x) = ΦT
n (s)vD

T
mΦm(x), (3.3)

where Dn and Dm are differentiation matrices with respect to s and x.
Then, replacing (3.2)-(3.3) in HJB equation we get

−ΦT
n (s)DnvΦm(x) + sup

u∈U

{
−ΦT

n (s)vD
T
mΦm(y)f(s, x, u)− L(s, x, u)

}
= 0, (3.4)

Collocating this equation at points (τi, xj) , i = 1, . . . , n− 1, j = 1, . . . ,m we conclude

−[Dnv]ij + sup
u∈U

{
−
[
vDT

m

]
ij
f(s, x, u)− L(s, x, u)

}
= 0, i = 1, . . . , n− 1, j = 1, . . . ,m, (3.5)

The above equation can be reformed to the following matrix form

−[Dnv][1:n−1,:] + sup
u∈U

{
−
[
vDT

m

]
[1:n−1,:]

f(s, x, u)− L(s, x, u)
}
= 0. (3.6)
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Finally, we have a system of algebraic equations (3.6) with initial condition v(1, x) = h(x), at points
xj , j = 1, . . . ,m; which can be solved by iterative schemes like Newton method.

3.1. Domain decomposition

Let us in one dimensional case, for Ω = [a, b], take Ω = [a, a0], [a0, a1] ∪ · · · ∪ [an−1, b] when
a0, a1, . . . , an−1 are the points that derivative does not exist. The following theorem shows the
efficiency of the proposed method using domain decomposition technique.

Consider one dimensional case, for Ω = [a, b], take Ω = [a, a0], [a0, a1] ∪ · · · ∪ [an−1, b] when
a0, a1, . . . , an−1 are the points that have no derivative, then the solution to (2.2)-(2.3) can be written
as

v(s, x1) =


v1(s, x1), x1 ∈ [a, a0]
v2(s, x1), x1 ∈ [a0, a1]

...
vn+1(s, x1), x1 ∈ [an−1, b].

4. Illustrative examples

In this section, we begin by demonstrating the performance of the proposed method developed
in Section. Matlab function ode45 is used to solve the system of differential equations with
terminal conditions. This solver controls the error by two parameters RelTol and AbsTol. We set
RelTol=1e-11 and AbsTol=1e-9.

To assess the accuracy of the method, the following averaged absolute error is reported: Em =
1

m+1∥vExact(t,x)− v(t,x)∥∞, where vExact and v are the exact and computed solutions, respectively.

4.1. Example 1

Consider the following system [4], for x ∈ [−1, 1],

min
u

−y(1)

s.t. ẏ(t) = y(t)u(t) t ∈ [0, 1], y(0) = x,

u(·) : [0, 1] → [0, 1].

(4.1)

Corresponding HJB equation is

−vt + sup
0≤u≤1

(−xu(t)vx) = 0,

v(1, x) = −x.
(4.2)

Collocating this equation, we conclude

−[Dnv][1:n−1,:] + sup
0≤u≤1

{
−
[
vDT

m

]
[1:n−1,:]

xju(t)
}
= 0. (4.3)

If the array (i, j) in matrix
[
vDT

m

]
xj is positive, we set u(t) = 0, otherwise we set u(t) = 1. Since

(4.3) is discontinuous in x = 0, we apply the multidomain strategy with m = 1 and [−1,+1] =
[−1, 0]∪[0, 1]. Then, we solve system of algebraic equations (4.3) with initial condition v(1, x) = −x,
at points xj , j = 1, . . . ,m.
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Table 1: Comparisons for the averaged absolute errors in Example 1.
Method in Ref. [4] Method in Ref. [6] Current method
m Error m Error m Error
5 1.575× 10−2 3 3.7898× 10−10 3 2.1526× 10−12

9 5.34× 10−3 5 2.2742× 10−10 5 2.1526× 10−12

14 2.18× 10−3 7 1.6239× 10−10 7 2.1526× 10−12

26 6.59× 10−4 9 1.2623× 10−10 9 2.1526× 10−12

Exact value function is as follows v(t, x) =

{
−xe1−t, x > 0,

−x, x ≤ 0.
Computed errors of approx-

imate value function from the methods in [4], [6] and the present one are given in Table 1; which
demonstrates high accuracy of the method. When the number of nodes increases, it is expected
that the pseudospectral solution will generate the optimal control solution with error close to zero.

5. Conclusions
In this paper, we discussed a new technique for the optimal control of high-nonlinear continuous-
time systems based on pseudospectral method. The main advantages of this approach lie in good
accuracy, very low numerical complexity, easy implementation and finding a feedback solution.
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A numerical method for solving multi-variable order
fractional integro-differential equations using the

Krall-Laguerre polynomials

Hadis Azin, Ali Habibirad

Abstract. In this work, the variable-order fractional Caputo derivative is used to define multi-
variable order fractional integro-differential equation. The orthogonal Krall-Laguerre polynomials
are used as basis functions to construct a numerical method for solving such problems. In the
established method, these polynomials are applied to transform the main problem into an algebraic
problem that can be easily solved. Some examples are considered to show the accuracy of the
method.

1. Introduction

Fractional and variable order derivatives can be applied in characterizing hereditary properties of
dynamical systems with uniform and non-uniform memory, respectively [1]. Therefore, developing
numerical algorithms for solving variable-order fractional equations is significant. Some authors have
proposed several numerical and approximation methods for solving such equations, the interested
readers are referred to [2, 3]. In this paper, we follows study the multi-variable order nonlinear
integro-differential equations as

s∑
j=1

bj(x)
c
0D

βj(x)
x y(x) = µ1

∫ 1

0
K1(x, t)(y(t))

n1dt+ µ2

∫ x

0
K2(x, t)(y(t))

n2dt+ f(x, y), (1.1)

with initial conditions y(l)(0) = yl for l = 0, 1, · · · ,max[βj(x)] and x ∈ [0, 1]. Moreover, s, n1

and n2 are positive integer numbers, µ1 and µ2 are real numbers, bj(x), K1(x, t) and K2(x, t) are
given known functions and c

0D
βj(x)
x y(x), (n− 1 < βj(x) ≤ n) is the βj(x)-th Caputo variable-order

fractional derivative expressed by

c
0D

βj(x)
x y(x) =


dny(x)

dxn
, βj(x) = n,

1

Γ(n− βj(x))

∫ x

0
(x− t)n−1−βj(x)

dny(t)

dtn
dt, n− 1 < βj(x) < n.

(1.2)

2. The Krall-Laguerre polynomials

Krall introduced the Krall orthogonal polynomials. These polynomials are eigenfunctions to fourth
order linear differential equations [4]. The Krall-Laguerre polynomial of order α > 0, Lα,k(x) of

Keywords: Multi-variable order fractional integro-differential equation, Krall-Laguerre polynomials, Caputo fractional
derivative.

AMS Mathematical Subject Classification [2010]: 34A08, 33C45, 41A10.
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degree k ∈ N ∪ {0} is given by

Lα,k(x) =

k∑
i=0

(−1)i

(i+ 1)!

(
k

i

)(
i(α+ k + 1) + α

)
xi. (2.1)

The set of Krall-Laguerre polynomials form an orthogonal system on [0,+∞) with⟨
Lα,k(x),Lα,k̄(x)

⟩
=

∫ +∞

0
Lα,k(x)Lα,k̄(x)e

−xdx+
1

α
(Lα,k(0)Lα,k̄(0)). (2.2)

Theorem 2.1. Suppose that Lα,k(x) are the functions introduced in (2.1) and β(x) ∈ (n − 1, n].
Then, we have

c
0D

β(x)
x Lα,k(x) =

{
D(n)Lα,k(x), β(x) = n,

Dβ(x)Lα,k(x), n− 1 < β(x) < n.
(2.3)

where

D(n)Lα,k(x) =

k∑
i=1

(−1)i

(i+ 1)!

(
k

i

)(
i(α+ k + 1) + α

)
(i− n+ 1)!xi−n,

Dβ(x)Lα,k(x) =
k∑

i=n

(−1)i

(i+ 1)!

(
k

i

)(
i(α+ k + 1) + α

) Γ(i+ 1)

Γ(i+ 1− β(x))
xi−β(x).

(2.4)

3. The proposed method

To construct a numerical technique for the problem given in (1.1), we approximate y(x) as y(x) ≃
m∑
k=0

ckLα,k(x) := CTΨα(x) where C is an (m+1) unknown vector. Theorem 2.1 yield c
0D

β(x)
x y(x) ≃

CTDβj(x)Ψα(x). Substituting this relations into (1.1) results

R(x) :=
s∑

j=1

bj(x) C
TDβj(x)Ψα(x)− µ1

∫ 1

0
K1(x, t)(C

TΨα(t))
n1dt

− µ2

∫ x

0
K2(x, t)(C

TΨα(t))
n2dt− f(x,CTΨα(x)) ≃ 0,

Λ := CTD(l)Ψα(0)− yl ≃ 0 l = 0, 1, . . . ,max[βj(x)].

(3.1)

Eventually, we obtain a system of (m+1) equations by inserting the shifted Chebyshev collocation
points xr in [0, 1] for r = 1, 2, . . . ,m−max[βj(x)].

4. Numerical results

Example 4.1. Consider the problem

2 c
0D

β1(x)
x y(x)− c

0D
β2(x)
x y(x) = 56

∫ 1

0
(x+ t)y(t)3dt+ f(x, y), (4.1)

with initial conditions y(0) = 1 and y′(0) = −3. The exact solution is y(x) = x2 − 3x+ 1. Also, we
obtain the source term f from the exact solution. In [5], this problem has been solved by considering
β1(x) =

x+3
3 and β2(x) =

x
6 . The absolute error obtained in [5] is 10−3 with m = 2 (the Bernstein

polynomials) while, we get the exact solution with m = 2 and α = 1 by using our method.
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Example 4.2. consider the problem

c
0D

β1(x)
x y(x) +c

0 D
β2(x)
x y(x) =

∫ 1

0
xt(y(t))2dt+

∫ x

0
(x− t)y(t)dt+ f(x, y), (4.2)

with initial conditions y(0) = y′(0) = 1 and β1(x) = 1.8− 0.45 sin(x), β2(x) = 0.8− 0.3 cos(x) and
f is extracted due to exact solution y(x) = ex as

f(x, y) = x−β1(x)

(
E1,1−β1(x)(x)−

1

Γ(1− β1(x))
− x

Γ(2− β1(x))

)
+ x−β2(x)

(
E1,1−β2(x)(x)−

1

Γ(1− β2(x))

)
+

3− e2

4
x+ 1− y(x),

(4.3)

where E is the Mittag-Leffler function. The obtained results are provided numerically and graphi-
cally in Table 1 and Fig. 1 with α = 1.

Table 1: The L∞ errors for Example 4.2 with some values m.
m L∞ CPU time (s)
5 1.9234E − 04 0.671
7 1.0547E − 08 0.813
9 5.6858E − 10 0.875
11 4.3269E − 13 1.234

Figure 1: The graphs of absolute error (left), and the exact and approximate solutions (right) for Example
4.2 with m = 12.

5. Conclusion

In this article, the multi-variable order fractional integro-differential equation has been generated by
using Caputo fractional derivative. The KrallLaguerre polynomials have been successfully extended
for solving this equation. Using the presented method, the problem was reduced into a nonlinear
system of algebraic equations and solved readily by the ”fsolve” command of Maple software. The
obtained numerical solutions maintain excellent accuracy in comparison with the exact solutions.
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Sparse two-greedy subspace Kaczmarz method with obliqe
projection for compressed sensing

Farshid Abdollahi, Fatemeh Pirayesh Dehkordi

Abstract. Kaczmarz method is one of alternating projection methods and is an iterative method
for solving large-scale systems. In this article, we use the two-greedy subspace Kaczmarz method
with obliqe projection to generate sparse solution. The sparse system solution is obtained by oblique
projecting the current solution on the hyperplane generated by two the active row. This method
improves the convergence speed compared to other Kaczmarz method with oblique projection.

1. Introduction

Due to the signals in the real world are either sparse themselves or can be approximated by sparse
signals, obtaining a sparse solution from a system of equations is of particular importance. This has
led to the development of the theory of Compressed Sensing(CS) [2]. Here we use Iterative Hard
Thresholding (IHT) Algorithm [5] because it has less computational complexity than other existing
methods for CS. Two-greedy subspace Kaczmarz method with obliqe projection can basically be
used to generate a solution for consistent system of linear equations. But by designing a series
of weights, the sparse solution can be obtained for a system of linear equations. i The signal
reconstruction problem is formulated as follows:

min ∥x∥0,
s.t : Ax = y, (1.1)

where x ∈ Rn (n < ∞) is the signal that we want to reconstruct it, ∥x∥0 represents the number of
nonzero entries of x, A ∈ Rm×n is the measurement matrix, m ≪ n and y ∈ Rm is the measurement
signal. This is a nonconvex optimization problem and has exponential computational complexity.

Due to the NP-hard of Problem (1.1), we consider the following problem, which is a convex
problem:

min ∥x∥1,
s.t : Ax = y, (1.2)

and plays an important role in CS theory. The IHT algorithm is an iterative method to reconstruct
the original signal as follows:

xt+1 = Hk(x
(t) + µAT (y −Ax(t))), (1.3)

where µ is the step size in each iteration and Hk is the hard thresholding operator (It sets all but
k largest entries (in magnitude) of x to zero).

Keywords: Compressed Sensing, Kaczmarz Method.
AMS Mathematical Subject Classification [2020]: 65F10, 65F50, 15A29..
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Two-greedy subspace Kaczmarz method with obliqe projection

2. Two-greedy subspace Kaczmarz method with obliqe projection

In [3], Two-Greedy Subspace Kaczmarz method is used to solve large-scale systems. In this method,
two rows of measurement matrices are selected based on the ordered residual vector and current
iterate orthogonal project onto the solution space given by these two rows. We use the Kaczmarz-
type method with given oblique projection d ∈ Rn , defined by

xk+1 = pdHi
(xk). (2.1)

The choice of direction is such that it increases the speed of classical Kaczmarz method. In this
article, we use the direction

d = aik+1
−

< aik , aik+1
>

∥ai∥
aik ,

where ai is the i-th row of the matrix A.
The index set of non-zero entries of vector x is denoted by supp(x). For the original signal x

with |supp(x)| = k, the support set S is defined as

S = supp|max{k′ ,n−j+1}(x
(j)), (2.2)

where S selects |max{k′
, n − j + 1} large entries of x(j) in magnitude and k

′ is estimated support
(k′

> k). First we generate the following weight vector.

w
(j)
l =

{
1, l ∈ S,
1√
j
, l ∈ SC .

(2.3)

The two selected rows sj and tj are replaced by a
′
sj = w⊙asj and a

′
tj = w⊙atj , where ⊙ is denoted

the element-wise product.

The iterative hard thresholding algorithm based on two-greedy subspace Kaczmarz method with
obliqe projection is expressed in Algorithm 1.

3. Numerical results

To illustrate the performance of the proposed method, we compare it with iterative hard threshold-
ing Sparse Greedy Randomized Kaczmarz with obliqe projection [1] and sparse maximal weighted
residual Kaczmarz method with oblique projection [4]. We tested the convergence rate of sig-
nal reconstruction for the IHT-S2GSKO, IHT-SMWRKO and the IHT-SGRKO algorithms with a
256×512 random measurement matrix A with independent identically distributed (i.i.d.) Gaussian
random entries. We tested this method for 100 different signals with sparsity between 30 and 60.

4. Conclusion

In this paper, we used two greedy subspace Kaczmarz method with obliqe projection to improve
the convergence rate of the iterative hard thresholding algorithm. Numerical results show this well.
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Algorithm 1 IHT-S2GSKO
Input: A, b, support estimate k

′ , stopping threshold η,x0
Output: x̃;
Compute: r1 = b−Ax(0)

s = arg max1≤i≤m|r(i)1 | and t = arg maxi∈[m]\s|r
(i)
1 |

x1 = x0 + bs−<as,x(0)>

∥as∥22
(as)

T + bt−<at,x(0)>

∥at∥22
(at)

T

Initialization: j = 2

while ( ∥x(j+1)−x(j)∥22
∥x(j)∥22

≤ η) do
rj = b−Ax(j)

Select rows ŝj and t̂j that satisfy
ŝj = arg max1≤i≤m|r(i)j | and t̂j = arg maxi∈[m]\sj |r

(i)
j |

Set the support estimate S = suppmax{k′ ,n−j+1}(x
(j))

Generate weight vector w(j) as w
(j)
l =

{
1 l ∈ S
1√
j

l ∈ SC

a
′
l = w(j)

⊙
al, l = t, s, ŝj , t̂j

D1 = ⟨a′
s, a

′
ŝj
⟩ and D2 = ⟨a′

t, a
′

t̂j
⟩

r1 = bŝj − ⟨a′
ŝj
, xj⟩ and r2 = bt̂j − ⟨a′

t̂j
, xj⟩

v1 = a
′
ŝj
− D1

∥a′s∥2
2a

′
s and v2 = a

′

t̂j
− D1

∥a′t∥2
2a

′
t

h1 = ∥v1∥ and h2 = ∥v2∥
α1 =

rŝj
h1 and α2 =

rt̂j
h2

x(j+1) = x(j) + α1v
1 + α2v

2

s = ŝj , t = t̂j
end while
x̃ = x(j)

Figure 1: The average convergence rate of the IHT-S2GSKO,IHT-SMWRKO and the IHT-SGRKO
method
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An hp-version collocation method for weakly singular
integral equations

Khadijeh Nedaiasl, Raziyeh Dehbozorgi

Abstract. We investigate the numerical solution of a class of nonlinear first kind integral equation
with weakly singular kernel. An hp-version of collocation method based Jacobi polynomials are
introduced and applied and the method is properly analyzed. The numerical result for a test
problem with singular solution is presented.

1. Introduction

We deals with the numerical solution of the nonlinear weakly singular Volterra integral equation of
the first kind

Ku(t) :=
∫ t

0
(t− s)α−1κ(t, s)ψ(s, u(s))ds = f(t), 0 < α ≤ 1, 0 ≤ t ≤ T <∞, (1.1)

where k(t, s), ψ(s, u(s)) in the kernel and f(t) the right-hand side term are known and u(t) is the
unknown to be determined.

The weighted Lebesgue spaces are utilized as the suitable functional spaces. Let define the
weight function χα,β(x) := (1− x)α(1 + x)β on the interval Λ := [−1, 1] for α, β > −1. For r ∈ N,
Hr
χα,β (Λ) is a weighted Sobolev space defined by

Hr
χα,β (Λ) =

{
v | v is measurable and ∥v∥r,χα,β <∞

}
,

where
∥v∥r,χα,β =

( r∑
k=0

|v|2k,χα,β

) 1
2
.

The semi-norm is defined as |v|k,χα,β = ∥∂kxv∥χα+r,β+r . For arbitrary real number r = [r] + θ with
θ ∈ (0, 1), Hr

χα,β (Λ) can be defined by the interpolation space as

Hr
χα,β (Λ) = [H

[r]

χα,β (Λ),H
[r]+1

χα,β (Λ)]θ.

More details can be seen in [4].
We recall the definition of the Riemann-Liouville integral operator 0Irx

0Irxu(x) =
∫ x

0
(x− t)r−1u(t)dt. (1.2)

Keywords: nonlinear operator, first kind Volterra integral equation, weakly singular operator, hp-version collocation
method. .

AMS Mathematical Subject Classification [2010]: 45H30; 45D05; 65L60; 65L70..
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An hp-version collocation method

Theorem 1.1. Assume that the Eq. (1.1) satisfies the following assumptions

i f(t) ∈ H
m

χα−1,0(Ω), f(0) = 0,

ii κ(s, t) ∈ C
m
(Ω× Ω) and κ(t, t) ̸= 0 for all t ∈ Ω,

iii ψ(s, u) ∈ Hm−1
χα−1,0(Ω× R),

iv inf
{
|∂ψ∂u (s, u)|

∣∣(s, u) ∈ Ω× R
}
≥M > 0,

v ψ(s, u) is Lipschitz continuous w.r. to u,

vi let k(t) =
∫ t
0

∫ t
x(t− y)−α(y − x)α−1κ(y, x)ψ(x, u(x)) dy dx, then k ∈ H

m−1

χα−1,0(Ω).

Then it has a unique solution u in H
m−1

χα−1,0(Ω).

1.1. Preliminaries

The shifted Jacobi-Gauss interpolation operator. Let us denote the standard Jacobi poly-
nomial of degree k by Jα,βk (x), for α, β > −1. It is well-known that the set of Jacobi polynomials
makes a complete orthogonal system with respect to the weight function χα,β(x) which means that∫

Λ
Jα,βk (x)Jα,βj (x)χα,β(x)dx = γα,βk δk,j , (1.3)

wherein δk,j is the Kronecker function, and

γα,βk =

{
2α+β+1Γ(α+1)Γ(β+1)

Γ(α+β+2) , k = 0,
2α+β+1

2k+α+β+1
Γ(k+α+1)Γ(k+β+1)
k!Γ(k+α+β+1) , k ≥ 1.

In order to work with these polynomials on the sub-intervals Ωn properly, the shifted Jacobi poly-
nomial of degree k is also defined as follows

Jα,βn,k (t) = Jα,βk (
2t− tn−1 − tn

hn
), t ∈ Ωn, k ≥ 0. (1.4)

Let xα,βn,j be the zeros of the standard Jacobi polynomial of degree k for 0 ≤ j ≤Mn and ωα,βn,j be the
corresponding Christoffel numbers. Then we can define the shifted Jacobi-Gauss quadrature points
on the interval Ωn as follows

tα,βn,j =
1

2
(hnx

α,β
n,j + tn−1 + tn), 0 ≤ j ≤Mn. (1.5)

Let PM (Ω) be the set of all polynomials of degree at most M on Ω. It is known from [1,3] that for
any ϕ(t) ∈ P2Mn+1(Ωn) ∫

Ωn

ϕ(t)χα,βn (t)dt = (
hn
2
)α+β+1

Mn∑
j=0

ϕ(tα,βn,j )ω
α,β
n,j , (1.6)

which leads to the result
Mn∑
j=0

Jα,βn,p (t
α,β
n,j )J

α,β
n,q (t

α,β
n,j )ω

α,β
n,j = γα,βp δp,q. (1.7)
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For any v ∈ C(Ωn), the shifted Jacobi-Gauss interpolation operator in the t-direction is defined as
follows

Iα,βt,Mn
v(tα,βn,j ) = v(tα,βn,j ), 0 ≤ j ≤Mn, (1.8)

and the following lemma reports an upper bound for the interpolation by (1.8).

Lemma 1.2. ( [5]) For any v ∈ H
m

χα,β
n

(Ωn) with integer 1 ≤ m ≤Mn + 1 and α, β > −1, we get

∥v − Iα,βx,Mn
v∥

χα,β
n

≤ c

√
Γ(Mn + 2−m)

Γ(Mn + 2 +m)
∥∂mx v∥χα+m,β+m

n
.

In particular, for any fixed m, we obtain

∥v − Iα,βx,Mn
v∥

χα,β
n

≤ c(Mn + 1)−m∥∂mx v∥χα+m,β+m
n

≤ chmn (Mn + 1)−m∥∂mx v∥χα,β
n
.

1.2. The hp-collocation method for weakly singular integral equations

For a fixed integer N , let Ωh := {tn : 0 = t0 < t1 < · · · < tN = T} be as a mesh on Ω, hn := tn−tn−1

and hmax = max
1≤n≤N

hn. Moreover, denote un(t) as the solution of Eq. (1.1) on the n-th subinterval
of Ω, namely,

un(t) = u(t), t ∈ Ωn := (tn−1, tn], n = 1, 2, . . . , N.

By the above mesh, we rewrite the Eq. (1.1) as∫ tn−1

0
(t− s)α−1κ(s, t)ψ(s, u(s))ds+

∫ t

tn−1

(t− s)α−1κ(s, t)ψ(s, u(s))ds = f(t),

then for any t ∈ Ωn, this equation can be written as∫ t

tn−1

(t− τ)α−1κ(τ, t)ψ(τ, un(τ))dτ = f(t)−
n−1∑
k=1

∫
Ωk

(t− s)α−1κ(s, t)ψ(s, uk(s))ds. (1.9)

Now, we transfer the interval (tn−1, t) to Ωn by the following linear transform

τ = σ(λ, t) := tn−1 +
(λ− tn−1)(t− tn−1)

hn
, (1.10)

to get
(
t− tn−1

hn
)α

∫
Ωn

(tn − λ)α−1κ
(
σ(λ, t), t

)
ψ
(
σ(λ, t), un(σ(λ, t))

)
dλ =

f(t)−
n−1∑
k=1

∫
Ωk

(t− s)α−1κ(s, t)ψ(s, uk(s))ds.

(1.11)

In the following, we mention some requirements considered in the next section. Let Iα−1,0
λ,Mn

:

C(Ωn) → PMn(Ωn) be the Jacobi-Gauss interpolation operator. Now, we define a new Legendre-
Gauss interpolation operator Iα−1,0

τ,Mn
: C(tn−1, t) → PMn(tn−1, t) owing to the relation (1.10) with

the following property
Iα−1,0
τ,Mn

g(τn,i) = g(τn,i), 0 ≤ i ≤Mn,

where τn,i := τn,i(x) = σ(λn,i, t) and λn,i are the Mn + 1 Jacobi-Gauss quadrature nodes in Ωn.
Clearly,

Iα−1,0
τ,Mn

g(τn,i) = g(σ(λn,i, t)) = Iα−1,0
λ,Mn

g(σ(λn,i, t)), 0 ≤ i ≤Mn,

T
he

9t
h

Se
m

in
ar

on

Numerical Analysis and
its

A
pplications

١٠٠
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and by Eq. (1.6), we get

∫ t

tn−1

(t− τ)α−1Iα−1,0
τ,Mn

g(τ)dτ = (
t− tn−1

2
)α

Mn∑
j=0

g(τn,j)wn,j . (1.12)

Meanwhile, it is noticed that

∫ t

tn−1

(t− τ)α−1
(
Iα−1,0
τ,Mn

g(τ)
)2
dτ = (

t− tn−1

2
)α

Mn∑
j=0

g2(τn,j)wn,j . (1.13)

These equations will be valid for the Legendre interpolation operator ItMn
, if we take α = 1 and

t = tn.

1.2.1 The hp-version of Jacobi-Gauss collocation method

In order to seek the solution unMn
(t) ∈ PMn(Ωn) of Eq. (1.11) by hp-collocation method, at the first

step this equation is fully discretized as

ItMn

(
( t−tn−1

hn
)α

∫
Ωn

(tn − λ)α−1Iα−1,0
λ,Mn

κ
(
σ(λ, t), t

)
ψ(σ(λ, t), unMn

(σ(λ, t)))dλ
)

= ItMn
(f(t))− ItMn

( n−1∑
k=1

∫
Ωk

(t− s)α−1ILs,Mk
κ(s, t)ψ(s, ukMk

(s))ds), t ∈ Ωn,
(1.14)

where

ItMn
un(t) = unMn

(t) =

Mn∑
p=0

ûnpLn,p(t),

ItMn
Iα−1,0
λ,Mn

(
(
t− tn−1

hn
)ακ

(
σ(λ, t), t

)
ψ(σ(λ, t), unMn

(σ(λ, t)))
)
=

Mn∑
p,q=0

anpqLn,p(t)J
α−1,0
n,q (λ),

n−1∑
k=1

ItMn
ILs,Mk

(∫
Ωk

(t− s)α−1κ(s, t)ψ(s, ukMk
(s)))ds =

n−1∑
k=1

ItMn

( Mk∑
q=0

w̃Lk,q(t)κ(t
L
k,q, t)ψ(t

L
k,q, u

k
Mk

(tLk,q))
)

=

Mn∑
p=0

n−1∑
k=1

Mk∑
q=0

bkpqLn,p(t),

(1.15)

and

ItMn
f(t) =

Mn∑
p=0

f̂np Ln,p(t). (1.16)

Then, we get

∫
Ωn

(tn − λ)α−1

hαn
ItMn

Iα−1,0
λ,Mn

(
(
t− tn−1

hn
)ακ

(
σ(λ, t), t

)
ψ(σ(λ, t), unMn

(σ(λ, t)))
)
dλ ==

Mn∑
p=0

ânp0Ln,p(t). (1.17)
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It is evident from Eqs. (1.15)-(1.17) that

ûnp =
2p+ 1

2

Mn∑
i=0

unMn
(tn,i)Ln,p(tn,i)wn,i,

ânp0 =
2p+ 1

21+α

Mn∑
i,j=0

(tn,i − tn−1)
ακ(σ(tα−1,0

n,j , tn,i), tn,i)ψ
(
σ(tα−1,0

n,j , tn,i), u
n
Mn

(σ(tα−1,0
n,j , tn,i))

)
Ln,p(tn,i)wn,iw

α−1,0
n,j ,

bkpq =
2p+ 1

2

Mn∑
i=0

w̃Lk,q(tn,i)κ(t
L
k,q, tn,i)ψ

(
tLk,q, u

k
Mk

(tLk,q)
)
Ln,p(tn,i)wn,i,

f̂np =
2p+ 1

2

Mn∑
i=0

fnMn
(tn,i)Ln,p(tn,i)wn,i.

(1.18)

With Eqs. (1.15)-(1.17), the equation (1.14) reads

Mn∑
p=0

ânp0Ln,p(t) =

Mn∑
p=0

f̂np Ln,p(t) +

Mn∑
p=0

b̃npLn,p(t),

where

b̃np =

n−1∑
k=1

Mk∑
q=0

bkpq.

Consequently, we compare the coefficients to obtain

ânp0 = f̂np + b̃np , 0 ≤ p ≤Mn. (1.19)

To evaluate the unknown coefficients unp for any given n, we solve the nonlinear system (1.19) with
the Newton iteration method. Finally, the approximate solution can be obtained as

uN
M
(t) =

N∑
n=1

Mn∑
p=0

unpLn,p(t). (1.20)

It is worth to notice that for the linear case of Eq. (1.1), the unknown coefficients ûnp for any given
n can be obtained by the following linear system of equations

Au = b+ c, (1.21)

where the entries of the matrix A = [ap,q]
Mn
p,q=0 are defined by

ap,q =
2p+ 1

21+α

Mn∑
i,j=0

(tn,i − tn−1)
ακ(σ(tα−1,0

n,j , tn,i), tn,i)Ln,q
(
σ(tα−1,0

n,j , tn,i)
)
Ln,p(tn,i)wn,iw

α−1,0
n,j ,

and
u = (ûn0 , . . . , û

n
Mn

)T , b = (b̃n0 , . . . , b̃
n
Mn

)T , c = (f̂n0 , . . . , f̂
n
Mn

)T .
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2. Some results on the analysis of the method

Theorem 2.1. Let un be the solution of Eq. (1.11) under the hypothesis of Theorem 1.1 and unMn

be the solution of Eq. (1.14). According the assumptions of Theorem 1.1, the function ψ(., u) fulfills
the Lipschitz condition with respect to the second variable, i.e.,

|ψ(., u1)− ψ(., u2)| ≤ γ|u1 − u2|, γ ≥ 0. (2.1)

Then, for any 1 ≤ n ≤ N and m ≤Mmin + 1,

B1 = B2 +B3,

with

∥B1∥2Ωn
≤chnT 2α−1

n−1∑
k=1

(
h2mk (Mk + 1)−2m∥∂ms ψ(s, uk(s))∥2Ωk

+ γ2(∥ek∥2Ωk
+ h2m−1

k (Mk + 1)−2m∥∂mt u∥2Ωk
)
)
+ ch2mn (Mn + 1)−2m∥∂mf∥2Ωn

,

(2.2)

where

B1 = ItMn

(
(
t− tn−1

hn
)α

∫
Ωn

(tn − λ)α−1
(
Iα−1,0
λ,Mn

(
κ
(
σ(λ, t), t

)
ψ(σ(λ, t), unMn

(σ(λ, t)))
)

− κ(σ(λ, t), t)ψ(σ(λ, t), un(σ(λ, t)))
)
dλ

)
,

B2 = f(t)− ItMn
f(t),

B3 =

n−1∑
k=1

ItMn

(∫
Ωk

(t− s)α−1
(
κ(s, t)ψ(s, uk(s))− ILs,Mk

(
κ(s, t)ψ(s, ukMk

(s))
))
ds

)
, (2.3)

and ek = uk − ukMk
for 1 ≤ k ≤ N .

Theorem 2.2. Assume that the Fréchet derivative of the operator Ku with respect to u is satisfied
at |(K′u)(t)| ≥ l > 0, then under the hypothesis of the Theorem 2.1, for sufficiently small hmax the
following error estimate is obtained

∥en∥2 = ∥un − unMn
∥2 ≤cα

δ2
exp(cγ2T 2α)

(
T 2α−1

n−1∑
k=1

(
h2mk (Mk + 1)−2m∥∂ms ψ(s, u(s))∥2Ωk

+ γ2h2mk (Mk + 1)−2m∥∂mt u∥2Ωk

)
+ h2m−1

n (Mn + 1)−2m
(
∥∂mf∥2Ωn

+ h2αn ∥ψ(., uNM (.))∥2Hm
χα−1,0 (Ωn)

)
+ h2m+α

n (Mn + 1)−2m
(
γ2∥u∥2Hm

χα−1,0 (Ωn)

+ ∥ψ(., u(.))∥2Hm
χα−1,0 (Ωn)

))
.

(2.4)

Theorem 2.3. Assume that u(t) be the exact solution of Eq. (1.1) and uN
M
(t) be the global approx-

imate solution obtained from Eq. (1.20). Under the hypothesis of Theorem 2.2, the following error
estimate can be derived for sufficiently small hmax as

∥u− uN
M
∥Ω ≤cα

δ
exp(cγ2T 2α)hmmax(Mmin + 1)−m

(
Tα(γ∥∂mt u∥Ω + ∥∂ms ψ(s, u(s))∥Ω) + ∥∂mf∥Ω

+ γ∥u∥Hm
χα−1,0 (Ω) + ∥ψ(., u(.))∥Hm

χα−1,0 (Ω) + hαmax∥ψ(., uNM (.))∥Hm
χα−1,0 (Ω)

)
.

(2.5)
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Figure 1: Plots of the E1(u
N
M ) error in logarithmic scale for the h- and p-version collocation methods

with α = 0.3 for Example 2.4.

2.1. Numerical results

Example 2.4. Consider a test problem with singular solution∫ t

0
(t− s)α−1 exp(ts)u2(s)ds = (

1

t
)−2αt2+αΓ(3 + 2α)Γ(α) 1F1(3 + 2α, 3 + 3α, t2), t ∈ [0, 1],

where the function 1F1 is called confluent hypergeometric function of the first kind. The exact
solution u(t) = t1+α belongs to H2

α−1,0([0, 1]). In this example, different merits of the hp- method
are investigated. First and foremost, the superiority of the hp- version method against h- and p-
version method with α = 0.3 is demonstrated by Figure 1 and 2. The hp-version method allows
us to adjust the parameters M and N to achieve the suitable solution. Figure 1 depicts h- and
p-version methods in which the values of parameters M and N are equal to 1, respectively. Figure 2
shows the hp-version collocation method for each fixed N = 1, 2, 4, 8 when hn = h = 1

N and various
values of Mn =M∗ for n = 1, . . . , N .

Secondly, in order to compare the theoretical and the numerical solution, we consider hp-version
with M = 2 and various N . Therefore, it is expected to have a rate near 2; namely, ρN ≈ m = 2.
This expectation is experimentally verified and shown in the left sub-figure of Figure 3.

Finally, we consider different values for α. According to Theorem 2.3, increasing the values of α
affirmatively affects on the convergence rate which is verified by the numerical results on the right
sub-figure of Figure 3.

2 4 6 8 10

10−6

10−5

10−4

10−3

10−2

M

lo
g
1
0
E

1
(u
N M
)

N = 1
N = 2
N = 3
N = 4

Figure 2: Plots of the E1(u
N
M ) error in logarithmic scale for the hp-version collocation method with

α = 0.3 for Example 2.4.
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An hp-version collocation method

101 102
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10−4
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Plot a) N, α = 0.7
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g
1
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E

1
(u
N 2
)

Mn =M∗ = 1
Theoretical results

2 4 6 8 10 12

10−6

10−5

10−4

10−3

10−2

Plot b) M

N
=

2

α = 0.3
α = 0.5
α = 0.7

Figure 3: Plots of the E1(u
N
M ) error in logarithmic scale: a) Comparison between theoretical and

numerical results b) The results of hp-method for Example 2.4 for various α.
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A numerical method based on Daubechies wavelet to solve
a class of FDEs

Nasim Madah Shariati

Abstract. Solving Fractional Differential Equations(FDEs) is an important matter in various fields
of sciences. In this paper, by using an extension of Block Pulse functions named quasi Block Pulse
functions, fractional integration operational matrix of scaling functions of the Daubechies wavelet
is introduced and through that a class of FDEs is solved numerically and acceptable results are
obtained.

1. Introduction

Fractional Differential Equations (FDES) have a significant role in numerous fields of sciences. Some
numerical methods have been used for solving FDEs such as Spectral Method [1], and wavelet [2]. In
1988 Ingrid Daubechies made an orthonormal basis from smooth wavelet with vanishing moments
of order N and compactly support for scaling function which is [0, 2N − 1]. In this paper, we define
quasi Block Pulse functions and by helping them, we introduce fractional integration operational
matrix for scaling function of the Daubechies wavelet and through that we solve a class of FDEs.

Let ϕ as the scaling function of the Daubechies wavelet. Assume that, we use vanishing moments
of order N . If f ∈ Vj of multiresolution analysis and t ∈ [a, b] that a, b ∈ Z, in this case the function
f(t) ∈ L2(R) can be approximated by

Pjf(t) =

2jb−1∑
k=2ja+2−2N

cj,kϕj,k(t), a ≤ t ≤ b,

such that {ϕj,k := 2j/2ϕ(2jt− k)} forms a base for subspace Vj of multiresolution analysis and [3]

cj,k =

∫ 2N−1

0
f(t)ϕj,k(t)dt.

2. Quasi Block Pulse Functions

These functions are similar to Block Pulse functions, with the difference that grid points are arbi-
trarily selected that are not necessarily equidistant.

Keywords: Fractional differential equation, Scaling function, Daubechies wavelet, Quasi B lock Pulse functions,
Fractional integration operational matrix.

AMS Mathematical Subject Classification [2010]: 33F05, 34A08, 34A45.
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A numerical method based on Daubechies wavelet to solve FDEs

Definition 2.1. For m ∈ N we define an m element partition of quasi Block Pulse functions on
[0, T ):

bi(t) =

{
1, ti ≤ t < ti+1,
0, otherwise, (2.1)

where i = 1, . . . ,m, and 0 = t1 < t2 < · · · < tm < tm+1 = T.

The disjointness and orthogonality properties are hold for the functions
{
bi
}m

i=1
defined in (2.1).

In order to approximate functions, we use truncated series of QBP functions with m terms in the
following way:

f(t) ≈
m∑
i=1

fibi(t) = F TBm(t) = Bm(t)TF, (2.2)

where F = [f1, f2. . . . , fm]T and ∆it = ti+1 − ti, we have fi =
1

∆it

∫ T
0 f(t)bi(t)dt.

2.1. Fractional Integration Operational Matrix for the QBP Functions

We can write the Riemann-Liouville integral operator of order α > 0 in the following form

Iαf(t) =
1

Γ(α)
tα−1 ∗ f(t), 0 ≤ t < T, (2.3)

notation ∗ means the convolution product. From (2.2), we have

Iαf(t) =
1

Γ(α)
tα−1 ∗ f(t) ≈ F T 1

Γ(α)

{
tα−1 ∗ Bm(t)

}
.

Taking the Laplace transform and then taking inverse Laplace transform results in

1

Γ(α)

∫ t

0
(t− τ)α−1bi(τ)dτ =

1

Γ(α+ 1)

{
(t− ti)

αu(t− ti)− (t− ti+1)
αu(t− ti+1)

}
, (2.4)

here u(t) is the unit step function. From definition of the QBP functions, for j = 1, . . . ,m, we can
write

(t− tj)
αu(t− tj) =

m∑
i=1

di,jbi(t) =
[
0, . . . , 0, dj,j , dj+1,j , . . . , dm,j

]
Bm(t),

where
di,j =

1

∆it

∫ ti+1−tj

ti−tj

tαu(t)dt =
(ti+1 − tj)

α+1 − (ti − tj)
α+1

∆it(α+ 1)
, i, j = 1, . . . ,m.

So from (2.4) we can write

1

Γ(α)

∫ t

0
(t− τ)α−1bi(τ)dτ =

1

Γ(α+ 1)

[
0, 0, . . . , 0, di,i, di+1,i − di+1,i+1, di+2,i − di+2,i+1, . . . , dm,i − dm,i+1

]
Bm(t),

and finally we conclude

IαBm(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1Bm(τ)dτ = FαBm(t), (2.5)
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N. Madah Shariati

where

Fα =
1

Γ(α+ 2)


d̄1,1 d̄2,1 − d̄2,2 d̄3,1 − d̄3,2 . . . d̄m,1 − d̄m,2

d̄2,2 d̄3,2 − d̄3,3 . . . d̄m,2 − d̄m,3

d̄3,3 . . . d̄m,3 − d̄m,4

. . . ...
0 d̄m,m

 ,

and
d̄i,j =

(ti+1 − tj)
α+1 − (ti − tj)

α+1

ti+1 − ti
.

3. Operational Matrix of the Scaling function of the Daubechies Wavelet

Consider vector of the scaling functions for the Duabechies wavelet

ϕm(t) =
[
ϕj,k1(t), ϕj,k1+1(t), . . . , ϕj,k2(t)

]T
,

where k2 − k1 = m − 1. Grid points are in the form of T =

{
ti|i = 1, . . . ,m

}
, and let matrix of

the scaling functions of the Daubechies wavelet by

Φm = [ϕm(t1), ϕm(t2), . . . , ϕm(tm)].

In grid points, we have
ϕm(t) = ΦmBm(t), (3.1)

and hence
Bm(t) =

(
Φm

)−1
ϕm(t). (3.2)

3.1. Fractional Integration Operational Matrix for the Scaling Functions of the Daubechies
Wavelet

Assume that fractional integration operational matrix for the scaling functions of the Daubechies
wavelet has the following form

Iαϕm(t) ≈ Pαϕm(t). (3.3)

In the grid points, from (2.5), (3.1), and (3.2), we can write

Iαϕm(t) = IαΦmBm(t) = ΦmIαBm(t) = ΦmFαBm(t) = ΦmFα(Φm)−1ϕm(t).

So, we have

Pα = ΦmFα

(
Φm

)−1

. (3.4)

4. Numerical Method

In this section, we declare a numerical method based on the scaling functions of the Daubechies
wavelet of order 2 named Daubechies Wavelet Method(DWM) to solve the FDEs in the form of

aDα
t y(t) + f

(
t, y(t)

)
= 0, a ≤ t < T. (4.1)
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A numerical method based on Daubechies wavelet to solve FDEs

The notation D points to Caputo fractional derivative and α ∈ Q. The initial conditions are

y(k)(0) = 0, k = 0, 1, . . . , ⌈α⌉ − 1, (4.2)

and we let a = 0 and T = 1. First, we let

Dαy(t) =

k2∑
k=k1

cj,kϕj,k(t) = CTϕm(t), (4.3)

where k1 = 2 − 2N , k2 = 2j − 2, and coefficients cj,k’s should be determined. Then, by using the
Riemann-Liouville integral operator of order α and imposing initial conditions, we get

y(t) = CT Iαϕm(t) = CTPαϕm(t). (4.4)

By substituting (4.3), (4.4) in Eq. (4.1) and using (3.1) and (3.4), and considering dyadic points
in interval [0,1) as grid points, we get a linear or nonlinear system with cj,k’s as unknowns. By
solving this system and then using (4.4) the numerical solution is obtained.

5. Main results

Example 5.1. First, we solve the linear FDE

Dαy(t) + y(t) = t4 − 1

2
t3 − 3

Γ(4− α)
t3−α +

24

Γ(5− α)
t4−α, 0 < α < 1, (5.1)

whit initial conditions y(0) = 0, and α = 1/4. The exact solution of Eq. (5.1) is [2]: y(t) = t4− 1
2 t

3.
Results are indicated in Table 1.

Table 1: Maximum of absolute error in different resolutions, Example 5.1.
∥ej(t)∥∞ j = 3 j = 4 j = 5 j = 6

[2] 0.0045 0.0018 0.0007 0.0002
DWM 0.0028 9.4756e-04 2.7797e-04 7.6733e-05

Example 5.2. Now, we solve the nonlinear FDE

Dαy(t) + y2(t) = t+
( tα+1

Γ(α+ 2)

)2
, 0 < α ≤ 2, (5.2)

whit initial conditions y(0) = y′(0) = 0. The exact solution of Eq. (5.2) is [1]: y(t) =
tα+1

Γ(α+ 2)
. We

solve for α = 1.5. Results are indicated in Table 2.

Table 2: Maximum of absolute error in different resolutions, Example 5.2.
∥ej(t)∥∞ j = 3 j = 4 j = 5 j = 6

DWM 3.8802e-03 1.0023e-03 2.5399e-04 6.3883e-05
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Modified Ostrowski method for solving nonlinear equations
and its dynamic

Vali Torkashvand, Manochehr Kazemi, Elham Hashemizadeh

Abstract. We have constructed a family of fourth-order methods which use three evaluations of
f(xk), f(wk), and f(yk). They have an efficiency index equal to 4

1
3 = 1.5874 and are optimal in

the sense of Kung and Traub’s conjecture. Moreover, the dynamics of the proposed methods are
displayed with some comparisons to other existing methods. Numerical comparison with existing
optimal methods implies that the new class supplies a practical alternative for solving nonlinear
equations.

1. Introduction

Most of the Mathematical problems that arise in science and engineering are very hard and sometime
impossible to solve exactly. Therefore, it is indispensable to calculate approximate solutions based
on numerical methods. The celebrated Newton’s method which can be defined as xk+1 = xk −
f(xk)
f ′(xk)

, is one of the oldest and the most applicable methods in the literature. This method has
locally quadratically convergence for the simple roots and per iteration requires one evaluation of
the function and its first derivative. Hence, many researchers have focused on constructing methods
that do not require functional derivative evaluation (Steffensen-like methods) and have a higher
degree of convergence than Newton’s method. Ostrowski introduces the first optimal two-point
method [5]. His method has a better efficiency index than Newton’s method as follows.{

yk = xk − f(xk)
f ′(xk)

, k = 0, 1, 2, . . . ,

xk+1 = yk − f(xk)
f ′(xk)

f(yk)
2f(yk)−f(xk)

.
(1.1)

But these metods have a major weakness, one has to calculate the derivative of f(x) at each
approximation. A family of Steffensen like methods was derived in [2,7,8,10] free from derivatives.

In this work, we turn Ostrowski’s method into a Steffensen-like and solve the problem of com-
puting the derivative function by the divided difference. The construction of the proposed class is
based on the weight function approach.

The rest of the paper is organized as follows: We describe the structure of the without memory
methods in Section 2. The numerical study presented in Section 3 confirms the theoretical results.
We compare the basin of attraction of the proposed method with several existing methods in Section
4. Finally, we give the concluding remarks.

Keywords: Nonlinear equations. Without memory methods. Order of convergence. Basin of attraction .
AMS Mathematical Subject Classification [2010]: 65H05.
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Modified Ostrowski method

2. The Method and Its Convergence

To derive new methods, we approximate f ′(xn) given in one-step (1.1) as follows:

wk = xk + βf(xk), f
′(xk) ≈ f [wk, xk] =

f(wk)− f(xk)

wk − xk
. (2.1)

In following, the derivative f ′(xn) in the second step will be approximated by

f [yk, wk]

h(tk)
, (2.2)

where h(tk) is a differentiable function that depends real variable tk =
f(yk)

f(xk)
. Therefore, we start

from the scheme (1.1), the approximations (2.1), (2.2) and state the following two-point method

{
wk = xk + βf(xk), yk = xk − f(xk)

f [wk,xk]
, k = 0, 1, 2, . . . ,

xk+1 = yk −H(tk)
f(xk)

f(xk)−2f(yk)
f(yk)

f [yk,wk]
.

(2.3)

Theorem 2.1. Let H, f : D ⊂ R → R be sufficiently differentiable functions and have a single
root x∗ ∈ D, for an open interval D. If the initial point x0 is sufficiently close to x∗, then the
sequence xm generated by any method of the family (2.3) converges to x∗. If H is any function with
H(0) = 1, H ′(0) = −1, |H ′′(0)| < ∞ and β ̸= 0 then the methods defined by (2.3) have convergence
order at least 4.

Proof. By using Taylor’s expansion of f(x) about x∗ and taking into account that f(x∗) = 0, we
obtain

f(xk) = f ′(x∗)(ek + c2e
2
k + c3e

3
k + c4e

4
k +O(e5k)). (2.4)

Then, computing ek,w = wk − x∗, we attain wk = xk + βf(xk)

ek,w = ek + ekβf
′(x∗)(1 + ek(c2 + ek(c3 + ekc4))) +O(e5k), (2.5)

and

yk =x∗ + (1 + βf ′(x∗))e2k + (−(2 + βf ′(x∗)(2 + βf ′(x∗))c22) + (1 + βf ′(x∗))(2 + βf ′(x∗))

c3e
3
k + ((4 + βf ′(x∗)(5 + βf ′(x∗)(3 + βf ′(x∗))))c32 − (7 + βf ′(x∗)(10 + βf ′(x∗)

(7 + 2βf ′(x∗))))c2c3 + (1 + βf ′(x∗)(3 + βf ′(x∗)(3 + βf ′(x∗)))c4)e
4
k +O(e5k). (2.6)

Using the Taylor expansion H(tk), we have

H(tk) = H(
f(yk)

f(xk)
) = H(0) +H ′(0)(

f(yk)

f(xk)
) +H ′′(0)

( f(yk)f(xk)
)2

2
. (2.7)
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Thus, we get

xk+1 − x∗ = yk − x∗ −H(tk)
f(xk)

f(xk)− 2f(yk)

f(yk)

f [yk, wk]

= −(−1 + h0)(1 + βf ′(x∗))c2e
2
k + ((−2 + h0− h1(1 + βf ′(x∗))2 − βf ′(x∗)

(2 + βf ′(x∗)))c22 − (−1 + h0)(1 + βf ′(x∗))(2 + βf ′(x∗))c3)e
3
k(βf

′(x∗))2

+ (
1

2
(8− 2h0 + 8h1− h2 + f ′(x∗)(10 + 6h0 + 14h1− 10h2)(6 + 8h1− 3h2)

(−βf ′(x∗))3(−2 + 2h0− 2h1 + h2)c32 − (7− h0 + 4h1 + 2βf ′(x∗)

(5 + h0 + 5h1) + (βf ′(x∗))2(7 + 2h0 + 8h1) + 2(βf ′(x∗))3(1 + h1)c2c3

− (−1 + h0)(1 + βf ′(x∗))(3 + βf ′(x∗)(3 + βf ′(x∗))))c4)e
4
k +O(e5k). (2.8)

By putting h0 = 1, h1 = −1, the final error expression is given by:

ek+1 =
−1

2
((1 + βf ′(x∗))2c2)((−2 + h2 + f ′(x∗)β(2 + h2)c22 + 2c3))e

4
k +O(e5k), (2.9)

which finishes the proof of the theorem.

Some other simple forms of functions H can be:{
H1(t) = 1− t, H2(t) =

1
1+t , H3(t) = (1− t

2)
2, H4(t) = e−t,

H5(t) =
1+2t
1+3t , H6(t) = cos(t)− sin(t), H7(t) = Arccos(t), H8(t) =

t2+1
1+t .

(2.10)

3. Numerical results

The principal purpose of numerical examples is to verify the validity of the theoretical developments
through a variety of test examples by use of Mathematica program. Numerical computations have
been carried out using variable precision arithmetic in Mathematica 11 with 10000 significant digits.
The computational order of convergence rc [6] computed by the expressions

rc =
log |f(xk)/f(xk−1)|
log |f(xk−1)/f(xk−2)|

. (3.1)

We compared proposed method (for β0 = 0.01), Kung-Traub’method (KTM) [3] and Ostrwoski’s
method (OM) [5]. The numerical values in Table 1 validate that the presented scheme TM4 performs
better, not only for the absolute error in the root and the absolute value of the function as compared
to without memory method. It should note that the condition for the convergence of repetitive
methods is to select the appropriate initial conjecture root of the nonlinear equation. One can see
more about this in reference [9].

f1(x) = x5 + x4 + 4x2 − 15, α ≈ 1.34, x0 = 1.1,

f2(x) = x3 + 4x2 − 10, α ≈ 1.36, x0 = 1,

f3(x) = 10xe−x2 − 1, α ≈ 1.67, x0 = 1,

f4(x) = sin(5x)ex − 2, α ≈ 1.36, x0 = 1.5,
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Modified Ostrowski method

Table 1: Comparison of various iterative methods.

functions TM4,H1(t) TM4,H2(t) TM4,H3(t) TM4,H4(t) TM4,H5(t) OM [5] KTM [3]
f1, x0 = 1.1 |xk+1 − xk| 3.87e-1378 2.10e-1418 2.22e-1343 6.90e-1301 9.51e-1379 7.39e-35 5.39e-31

|f(xk+1)| 1.24e-5509 2.14e-5669 5.66e-5370 1.17e-5199 2.76e-5510 1.01e-135 5.40e-120
Iter 3 4 3 3 3 3 4
rc 4.00 4.00 4.00 4.00 4.00 4.00 4.00

f2, x0 = 1 |xk+1 − xk| 8.79e-1385 1.43e-1338 2.10e-1233 3.26e-1241 3.48e-1371 2.15e-34 3.36e-38
|f(xk+1)| 9.20e-5537 6.50e-5352 1.51e-4931 1.02e-4965 1.129e-5481 5.78e-135 4.37e-64
Iter 3 4 3 3 3 3 4
rc 4.00 4.00 4.00 4.00 4.00 4.00 4.00

f3, x0 = 1 |xk+1 − xk| 5.69e-1327 7.00e-1346 1.87e-1327 1.21e-1329 2.37e-1305 2.15e-34 7.32e-28
|f(xk+1)| 2.27e-5305 1.20e-5382 2.00e-5307 2.30e-5316 1.42e-5218 5.78e-135 1.33e-108
Iter 3 4 3 3 3 3 4
rc 4.00 4.00 4.00 4.00 4.00 4.00 4.00

f4, x0 = 1.5 |xk+1 − xk| 1.69e-1336 6.71e-1315 2.04e-1342 5.31e-1361 2.69e-1276 7.39e-35 1.24e-35
|f(xk+1)| 3.92e-5342 9.36e-5256 8.27e-5366 3.73e-5440 2.22e-510 11.01e-135 5.11e-124
Iter 3 4 3 3 3 3 4
rc 4.00 4.00 4.00 4.00 4.00 4.00 4.00

4. Basins of attraction of fourth-order derivative-free methods

In this section, to analyze the dynamic behavior of the proposed method, selecting the appropriate
value of the parameter β and selecting the weight function with the maximum absorption region
of a polynomial have been used. From the dynamic point of view, we take a 500× 500 grid of the
square D = [−5, 5]× [−5, 5] ∈ C. We have studied the dynamic behavior of the proposed methods
by using the function f(z) = z3 − 1. Various researchers have used basins of attraction to compare
iteration schemes, for example, [1, 4].

We analog the attraction basin of the proposed method with two-step methods in Figure (1).
Figure (1q) is Kung-Traub’s method, which does not use the function-derivative where (1r) is the
method with the proposed Kung-Traub derivative. According to the Figures, one has concluded
that the basins of attraction of the proposed method are the best method because it has a vast and
lighter basin of the attraction than all other mentioned methods (H1(t)). Here the value of the free
parameter β = 0.001 is considered.

5. Conclusion

In this paper, we used the idea of the weight function and turned Ostrowski’s method into an optimal
order method. The proposed methods are without-memory derivative-free. Numerical tests intend
to verify the better performance of the proposed method over the others. According to the examples
studied in Figures, we conclude that the weight function H1(t) and parameter β = 0.001 have the
highest stability region and are competitive on other methods.

Further researches must be done to develop the proposed methods for system of nonlinear
equations. These could be done in the next studies.
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(a) H1(t), β = 1 (b) H1(t), β = 0.1 (c) H1(t), β = 0.01 (d) H2(t), β = 1

(e) H2(t), β = 0.1 (f) H2(t), β = 0.01 (g) H3(t), β = 0.1 (h) H3(t), β = 0.01

(i) H7(t), β = 0.1 (j) H7(t), β = 0.01 (k) β = 0.01, H8(t) (l) β = 0.001, H8(t)

(m) β = 0.01, H5(t) (n) H4(t), β = 0.01 (o) H9(t), β = 0.01 (p) H6(t), β = 0.01

(q) Kung − Traub (r) Kung − Traub (s) Ostrowski (t) β = 0.001, H1(t)

Figure 1: Basins of attraction for f(z) = z3 − 1 for various methods
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On the variable parameter Uzawa method for double saddle
point systems

Mohammad Mahdi Izadkhah

Abstract. In this paper, we present variable parameter Uzawa method for solving double saddle
point systems. We find the variable parameters of the proposed method, in a way that minimize
some vector norms induced by symmetric positive definite matrices. Some numerical results are
given to demonstrate the efficiency of the presented method.

1. Introduction

In this work, we consider the following large and sparse system of linear equations

Au ≡

A BT CT

B 0 0
C 0 0

x
y
z

 =

b1
b2
b3

 ≡ b, (1.1)

where A ∈ Rn×n is a symmetric positive definite(SPD) matrix, B ∈ Rm×n and C ∈ Rp×n have full
row ranks, x, b1 ∈ Rn, y, b2 ∈ Rm and z, b3 ∈ Rp. This is a class of double saddle point problems.
The notation Ran(A) stands for the range of A. For given vectors x, y and z of dimension n,m
and p, respectively, u = (x; y; z) will denote a column vector of dimension n +m + p. we use ⟨·, ·⟩
for usual inner product of two vectors. For a symmetric positive definite matrix G, we consider
∥x∥G = ∥G

1
2x∥2 for an arbitrary vector x, where ∥v∥2 =

√
⟨v, v⟩ is Euclidean vector 2-norm. Linear

systems of the form (1.1) arise from mixed finite element approximation of the potential fluid
flow problems; see [1, 2] and the references therein for detailed descriptions of these problems. The
following Proposition given in [1] represents the necessary and sufficient condition of the invertibility
of the coefficient matrix A in (1.1).
Proposition 1.1. Let A be a SPD matrix and assume that B and C have full column ranks.
Then a necessary and sufficient condition for the invertibility of the matrix A in (1.1) is that
Ran(BT ) ∩ Ran(CT ) = {0}.

2. Variable parameter Uzawa method

Uzawa’s method has long been a popular technique for solving saddle point problems. We study
possible extension of Uzawa’s method to the double saddle point problem (1.1). To this end, we
first split the coefficient matrix A as follows

A = M−N , M =

A 0 0
B −αQ 0
C 0 −βM

 , N =

A −BT −CT

0 −αQ 0
0 0 −βN

 , (2.1)

Keywords: Uzawa method, SOR iterative method, saddle point problem.
AMS Mathematical Subject Classification [2010]: 65F08,65F10, 65F50.
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in which the parameters α > 0 and β > 0 and the matrices Q and M = N are given and be positive
definite. So, based on the splitting (2.1) the exact solution u∗ = (x∗; y∗; z∗) satisfies

x∗ = A−1(b1 −BT y∗ − CT z∗), (2.2)
y∗ = y∗ + αQ−1(Bx∗ − b2), (2.3)
z∗ = z∗ + βM−1(Cx∗ − b3). (2.4)

By applying the first-order Richardson iterative method to the three linear equations (2.2)-(2.4), it
follows

x(k+1) = A−1(b1 −BT y(k) − CT z(k)),

y(k+1) = y(k) + αQ−1(Bx(k+1) − b2), (2.5)
z(k+1) = z(k) + βM−1(Cx(k+1) − b3).

We find the optimum parameters α and β such that the norms

∥αQ−1g(k) − g(k)∥Q = ∥αQ− 1
2 g(k) −Q

1
2 g(k)∥2, ∥βM−1h(k) − h(k)∥M = ∥βM− 1

2h(k) −M
1
2h(k)∥2

are minimized, respectively. Here g(k) = Bxk+1 − b2 and h(k) = Cxk+1 − b3. A direct calculation
gives

α =
⟨Q−1g(k), g(k)⟩
⟨g(k), g(k)⟩

,

β =
⟨M−1h(k), h(k)⟩

⟨h(k), h(k)⟩
.

We are now ready to formulate the variable parameter Uzawa(VPU) method by (2.5) and motivated
from [4] for the double saddle point problem (1.1).

Algorithm 1. (Variable parameter Uzawa method)
Given x(0) ∈ Rn, y(0) ∈ Rm and z(0) ∈ Rp, the sequence u(k) = (x(k); y(k); z(k)) is defined for

k = 1, 2, . . . as follows:

1. Set x(k+1) = A−1(b1 −BT y(k) − CT z(k)).

2. Compute g(k) = Bxk+1 − b2 and d(k) = Q−1g(k). Then, compute the relaxation parameter

αk =

{
⟨d(k),g(k)⟩
⟨g(k),g(k)⟩ , g(k) ̸= 0,

1, g(k) = 0.

Set y(k+1) = y(k) + αkd
(k).

3. Compute h(k) = Cxk+1 − b3 and s(k) = M−1h(k). Then, compute the relaxation parameter

βk =

{
⟨s(k),h(k)⟩
⟨h(k),h(k)⟩ , h(k) ̸= 0,

1, h(k) = 0.

Set z(k+1) = z(k) + βks
(k).

Remark 2.1. To further improvement of the computing efficiency of the VPU method, we can employ
the Cholesky decomposition to solve the systems of linear equations with coefficient matrices A, Q
and M , directly. For iterative scheme, one can use conjugate gradient method to some prescribed
accuracy at each step.
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3. Numerical experiments

We now describe some numerical experiments were carried out in order to show the efficiency and
accuracy of the presented method. The computational study was done in the next problems.

Example 3.1. Let us consider the double saddle point system (1.1), where the entries of the
matrices A ∈ Rn×n, B ∈ Rm×n, and C ∈ Rp×n are defined as follows

A = (aij) =


i+ 1, i = j
1, |i− j| = 1
0, otherwise.

, B = (bij) =

{
i, j = n−m+ i
0, otherwise.

and
C = (cij) =

{
i, i = j
0, otherwise.

For this problem, the condition of Proposition 1.1 is satisfied. First, we set Q = BA−1BT and
M = CA−1CT , then we used Algorithm 1. to solve (1.1). The vector b is chosen so that the
components of the exact solution u of (1.1) have values equal to 1. All runs are started with the
initial zero vector and terminated if the current iterations satisfy ERR = ∥r(k)∥2

∥r(0)∥2
≤ 10−4, or if the

prescribed iteration number kmax = 2000 is exceeded. Here, we define r(k) as

r(k) =

b1
b2
b3

−

A BT CT

B 0 0
C 0 0

x(k)

y(k)

z(k)

 .

We compare the performance of our method with the SOR-like method [3] by reporting the number
of iterations(minIT), the CPU time and the relative residual norm(ERR) in Talbe 1. we choose
ω = 1.2538 in the SOR-like method.

Table 1: CPU time, iteration number and EER
VPU method SOR-like method

n m p minIT CPU(s) ERR ω minIT CPU(s) ERR
50 30 10 79 0.0042 9.891e-05 1.2538 285 0.0625 9.996e-05
80 40 20 86 0.0054 9.766e-05 1.2538 429 0.2188 9.978e-05
100 50 40 183 0.0138 9.601e-05 1.2538 530 0.3281 9.914e-05
300 150 80 359 0.1195 9.920e-05 1.2538 1573 4.4688 9.983e-05

From the results reported in Table 1, we can conclude that minIT and computational CPU
time are important items to demonstrate the efficiency of the VPU method in comparison with the
SOR-like method [3].
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Abstract. In this work, we study the error analysis of an efficient numerical method based on the
finite difference approximation in time and the finite element method in spatial for a distributed-
order time Schrödinger equation (DOT-SE). Firstly, the given problem is transformed into couple
system of distributed-order fractional differential equations. Then, the fully discrete is formulated
by using finite difference and finite element approximations. Moreover, unconditionally stability of
this discrete scheme is proved.

1. Introduction

In this article, we study the error analysis of a distributed-order time fractional Schrödinger equation
as follows

iDω(α)ψ(x, t) + δ
∂2

∂x
ψ(x, t)− v(x, t)ψ(x, t)− z(x, t) = 0, (1.1)

with the initial condition ψ(x, 0) = f, x ∈ [−l, l] and boundary condition ψ(−l, t) = ψ(l, t) =

0, t ∈ [0, T ]. Also, the parameter δ is real constant, Dω(α)
t denotes the distributed-order frac-

tional derivative, ω(α) satisfy 0 <
∫ 1
0 ω(α) < ∞ and v(x, t) is general potential. In recent years,

time-fractional Schrödinger equation has been used to describe many physical phenomena . Re-
cently, many efforts have been made to develop effective numerical methods for solving fractional
Schrödinger equation. The main goal of this paper is to study error analysis of FE-L1 method for
DOT-SE. To do this, equation (1.1) can be written as the following coupled system:{

D
ω(α)
t ψI(x, t)− δ ∂

2

∂xψR(x, t) + v(x, t)ψR(x, t) + zR(x, t) = 0,

D
ω(α)
t ψR(x, t) + δ ∂

2

∂xψI(x, t)− v(x, t)ψI(x, t)− zI(x, t) = 0.

2. Numerical approximation

We first recall some definitions and lemmas which are needed in the numerical analysis.

Lemma 2.1. Let 0 < α ≤ 1, define the nodes σα = 1
Mα

, αm = mσα, m = 0, 1, 2, ...,Mα in the
interval [0, 1] where α0 = 0 < α1 < ... < αMα and s(α) ∈ C2(Ω), then we have∫ 1

0
s(α)dα = σα

Mα∑
m=0

Ams(αm)−
σα
12
s2(ξ), ξ ∈ (0, 1),

where Am = 1
2 for m = 0 or Mα and Am = 1 for otherwise.

Keywords: Schrödinger equation, distributed-order fractional equation, finite difference, L1-method, finite element .
AMS Mathematical Subject Classification [2010]: 13F55, 05E40, 05C65.
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Lemma 2.2. Let tn = nτ , n = 0, 1, 2, ..., N , and T = Nτ , we discretize the Caputo derivative by a
difference approach as follows

C
0D

α
t ψ(tn) =

1

Γ(1− α)

∫ tn

0
(tn − s)−αψ́(s)ds =

1

ταnΓ(1− α)

n∑
j=0

bnj dtψ(tn−j) +R1
τ +R2

τ ,

where bnj = (j + 1)1−α − j1−α and dtψ(tn−j) = ψ(tn−j) − ψ(tn−j−1), j = 0, 1, 2, ..., n − 1. The
truncated errors R1

τ , R
2
τ satisfy R2

τ = O(τ2) and |R1
τ | ≤ Cτ2−αmax |∂

2ψ(x,t)
∂t2

|.

The corresponding weak formulation couple system is to seek {ψI , ψR} ∈ H1
0 ×H1

0 for any
(φI , φR) ∈ H1

0 ×H1
0 , satisfying the following relation{

(D
ω(α)
t ψI(x, t), φR) + δ(∂ψR(x,t)

∂x , ∂φR
∂x ) + v(x, t)(ψR(x, t), φR) + (zR(x, t), φR) = 0,

(D
ω(α)
t ψR(x, t), φI)− δ(∂ψI(x,t)

∂x , ∂φI
∂x )− v(x, t)(ψI(x, t), φI)− (zI(x, t), φI) = 0,

where the bilinear form B(·, ·) is defined by B(ψ,φ) = δ(∂ψ∂x ,
∂φ
∂x )+ v(x, t)(ψ,φ). Now, we define the

FE space Xh ⊂ H1
0 by Xh = {φh ∈ H1

0 ∩C0(Ω)|φh|eh ∈ Pr(eh), eh ∈ Ωh}, where Ωh = {eh|eh ∈ Th}
and Th is a family of subdivisions Ω = [0, 1]. Based on the given FE space Xh, the corresponding FE
semi-discrete scheme is to find {ψI,h, ψR,h} ∈ Xh ×Xh such that, for any (φI,h, φR,h) ∈ Xh ×Xh,
we have {(

D
ω(α)
t ψI,h), φR,h

)
+B(ψR,h, φR,h) + (zR(x, tn), φR,h) = 0, ∀φR,h ∈ Xh,(

D
ω(α)
t ψR,h), φI,h

)
−B(ψI,h, φI,h)− (zI(x, tn), φI,h) = 0, ∀φI,h ∈ Xh.

(2.1)

To give the fully discrete analysis based on the spatial semi-discrete system, we need to approximate
both distributed-order and fractional derivative in time.

Using Lemma 2.1 and Lemma 2.2, we can consider L1 type discretization for distributed-order
fractional derivative at t = tn, as follows

(
σα

ταn Γ(1−α)
∑n

j=0

∑Mα
m=0Amω(αm)b

n
j dtψ

n−j
I,h , φR,h

)
+B(ψnR,h, φR,h) + (zR(x, tn), φR,h)

= R
ω(α)
I + L1RαI , ∀φR,h ∈ Xh,(

σα
ταn Γ(1−α)

∑n
j=0

∑Mα
m=0Amω(αm)b

n
j dtψ

n−j
R,h , φI,h

)
−B(ψnI,h, φI,h)− (zI(x, tn), φI,h)

= R
ω(α)
R + L1RαR, ∀φI,h ∈ Xh.

(2.2)

2.1. Stability and error analysis

Theorem 2.3. The fully discrete variational formulation (2.2) is unconditionally stable.

Proof. To show the unconditionally stability of system (2.2), we have to prove the following relation

∥ψkI,h∥2 + ∥ψkR,h∥2 ≤ ∥ψ0
I,h∥2 + ∥ψ0

R,h∥2 +
1

χ
(∥zkR∥2 + ∥zkI ∥2). (2.3)

Setting {φR,h, φI,h} = {ψnI,h, ψnR,h}, χ =
∑Mα

m=0Amω(αm)
σα

ταn Γ(1−α) in system (2.2) and since
1

ταn Γ(1−α)
∑n−1

j=0 b
n
j dtψ

n−j = 1
ταn Γ(1−α)

(
b0ψ

n −
∑n−1

j=1 (bj − bj−1)ψ
n−j − bn−1ψ

0
)
, using the Cauchy-

Schwartz inequality this system can be written as
χ∥ψnI,h∥2 +B(ψnR,h, ψ

n
I,h) ≤ ∥znR∥∥ψnI,h∥+ χ

∑n−1
j=1 (bj−1 − bj)∥ψn−jI,h ∥∥ψnI,h∥

+χbn−1∥ψ0
I,h∥∥ψnI,h∥,

χ∥ψnR,h∥2 −B(ψnI,h, ψ
n
R,h) ≤ ∥znI ∥∥ψnR,h∥+ χ

∑n−1
j=1 (bj−1 − bj)∥ψn−jR,h ∥∥ψ

n
R,h∥

+χbn−1∥ψ0
R,h∥∥ψnR,h∥.

(2.4)

T
he

9t
h

Se
m

in
ar

on

Numerical Analysis and
its

A
pplications

١٢٢



F. Hashemi, E. Hesameddini, A. Taleei

Due to B(ψnR,h, ψ
n
I,h) = −B(ψnI,h, ψ

n
R,h) and B(ψ,φ) ≥ 0 and with summing the both sides of system

(2.4), we get

χ(∥ψnI,h∥2 + ∥ψnR,h∥2) ≤χ
n−1∑
j=1

(bj−1 − bj)
(
∥ψn−jI,h ∥∥ψnI,h∥+ ∥ψn−jR,h ∥∥ψ

n
R,h∥

)
+ χbn−1

(
∥ψ0

I,h∥∥ψnI,h∥+ ∥ψ0
R,h∥∥ψnR,h∥

)
+ ∥znR∥∥ψnI,h∥+ ∥znI ∥∥ψnR,h∥.

The Holder’s inequality, implies that

χ(∥ψnI,h∥2 + ∥ψnR,h∥2)
1
2 ≤χ

n−1∑
j=1

(bj−1 − bj)(∥ψn−jI,h ∥2 + ∥ψn−jR,h ∥
2)

1
2

+ χbn−1(∥ψ0
I,h∥2 + ∥ψ0

R,h∥2)
1
2

+ (∥znR∥2 + ∥znI ∥2)
1
2 .

By using above inequality, we show that our claim (2.3) is valid. To do this the method of mathe-
matical induction will be used. For n = 1, using (2.6), results in

∥ψ1
I,h∥2 + ∥ψ1

R,h∥2 ≤ ∥ψ0
I,h∥2 + ∥ψ0

R,h∥2 +
1

χ
(∥z1R∥2 + ∥z1I∥2). (2.5)

which is true. Suppose that the relation (2.4) is true for n = k−1. Using this hypothesis for n = k,
one obtains

∥ψkI,h∥2 + ∥ψkR,h∥2 ≤
( k−1∑
j=1

(bj−1 − bj) + bk−1

)
(∥ψ0

I,h∥2 + ∥ψ0
R,h∥2) +

1

χ
(∥zkR∥2 + ∥zkI ∥2),

since
n∑
j=1

(bj−1 − bj) + bn = (1− b1) +
n−1∑
j=2

(bj−1 − bj) + bn−1 = 1, (2.6)

we get the following inequality, which is consistent with our claim

∥ψkI,h∥2 + ∥ψkR,h∥2 ≤ ∥ψ0
I,h∥2 + ∥ψ0

R,h∥2 +
1

χ
(∥zkR∥2 + ∥zkI ∥2).

Therefore, the proof is completed.

In the following theorem, an error bound for the time discritization of system (2.1) is presented.

Theorem 2.4. Suppose that ψI , ψR, are the exact solutions of system (2.1). Then, its time
discritization satisfies the following relation

∥ψI(tn)− ψnI ∥+ ∥ψR(tn)− ψnR∥ ≤ ∥Rω(α)I + L1RαI ∥+ ∥Rω(α)R + L1RαR∥.

Proof. Since ψI , ψR are the exact solutions of system (2.1) by subtracting this system with its
related time semi-discrete from, also setting

ϱnR = ψR(tn)− ψnR, ϱ
n
I = ψI(tn)− ψnI ,

χ =

Mα∑
m=0

Amω(αm)
σα

ταnΓ(1− α)
, φI = ϱnR, φR = ϱnI ,
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The error analysis of an efficient numerical method

and using the Cauchy-schwarz inequality, one obtains
χ∥ϱnI ∥2 +B(ϱnR, ϱ

n
I ) ≤ ∥Rω(α)I + L1RαI ∥∥ϱnI ∥+ χ

∑n−1
j=1 (bj−1 − bj)∥ψn−jI,h ∥∥ϱnI ∥

+χbn−1∥ϱ0I∥∥ϱnI ∥,
χ∥ϱnR∥2 −B(ϱnI , ϱ

n
R) ≤ ∥Rω(α)R + L1RαR∥∥ϱnR∥+ χ

∑n−1
j=1 (bj−1 − bj)∥ϱn−jR ∥∥ϱnR∥

+χbn−1∥ϱ0R∥∥ϱnR∥.

Doing the some process in the proof of theorem 2.3, results in

∥ψI(tn)− ψnI ∥+ ∥ψR(tn)− ψnR∥ ≤ ∥Rω(α)I + L1RαI ∥+ ∥Rω(α)R + L1RαR∥,

and the proof is completed.
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A robust spectral scheme for non-linear dynamical model of
COVID-19 disease

Amin Faghih, Payam Mokhtary

Abstract. In this paper, a high-order Galerkin approach based on the fractional Jacobi orthogonal
functions is implemented for the numerical solution of a non-linear fractional dynamical system,
in our case, modeling the recent pandemic due to corona virus (COVID-19). At the end, we have
given a numerical approximation to illustrate the validity of the method.

1. Introduction

Due to the corona virus and related death toll, many studies have been recorded on mathematical
modeling of outbreak of COVID-19 [2]. In [2], authors considered the following model of four
compartment including healthy or susceptible population z1(t), the exposed class z2(t), the infected
population z3(t) and the removed class z4(t) (death due to corona or natural) at time t (day) as

Dγ
Cz1(t) = ā− K̄z3(t)z1(t)(1 + α̂z3(t))− d̄0z1(t),

Dγ
Cz2(t) = K̄z3(t)z1(t)(1 + α̂z3(t))− (d̄0 + κ̄)z2(t),

Dγ
Cz3(t) = b̄+ α̂z2(t)− (β̄ + d̄0 + δ̄)z3(t),

Dγ
Cz4(t) = δ̄z3(t)− d̄0z4(t),

zj(0) = z
(0)
j , j = 1, 2, 3, 4, t ∈ χ = [0, T ],

(1.1)

  where K̄ = R0d̄0(d̄0+κ̄)(β̄+d̄0+δ̄)
α̂ā is proportionality constant. The details of the parameters written

in the model (1.1) and their values are given in Table 1. Here γ = η
λ ∈ (0, 1) is a positive rational

number described by the co-prime integers η ≥ 1 and λ ≥ 2, and T is a finite positive real number.
Dγ

C is known as Caputo fractional derivative of order γ [1].
In this paper, we intend to provide a highly accurate fractional Jacobi Galerkin method for

solving the non-linear fractional dynamical system (1.1).

2. Fractional Jacobi Galerkin method

The fractional Jacobi functions J
(µ,ν,τ)
n (t) with µ, ν > −1, τ ∈ (0, 1] and t ∈ χ are defined from the

Jacobi polynomials J
(µ,ν)
n (x) through the coordinate transform x = 2( t

T )
τ − 1 as follows [3]

J (µ,ν,τ)
n (t) = J (µ,ν)

n

(
2(

t

T
)τ − 1

)
= Span{1, tτ , . . . , tnτ}.

Keywords: Mathematical model of COVID-19, Non-linear fractional dynamical system, Fractional Jacobi functions,
Galerkin method.

AMS Mathematical Subject Classification [2010]: 34A09, 65L05, 65L20.
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A spectral scheme for model of COVID-19 disease

These functions are mutually orthogonal concerning the weight function w(µ,ν,τ)(t) = tτν+τ−1(T τ−
tτ )µ. Further properties of fractional Jacobi functions can be found [3]. We set τ = 1

λ and for
j = 1, 2, 3, 4 consider the fractional Jacobi Galerkin solution as

zj,N (t) =

∞∑
i=0

vj,iJ
(µ,ν,τ)
i (t) = vjJ = vjJT t, vj = [vj,0, vj,1, . . . , vj,N , 0, . . .], (2.1)

where
J = [J

(µ,ν,τ)
0 (t), J

(µ,ν,τ)
1 (t), . . . , J

(µ,ν,τ)
N (t), . . .]T ,

is the vector of fractional Jacobi functions, J is an infinite lower-triangular matrix and T t =
[1, tτ , . . . , tNτ , . . .]T .

Now, we give the following lemma which transforms z1,N (t)z3,N (t) and z1,N (t)z23,N (t) into a
suitable matrix form.

Lemma 2.1. The following relations hold

z1,Nz3,N = v1JM3T t, z1,Nz23,N = v1JM∗
3T t, (2.2)

where M3 and M∗
3 are the following infinite upper-triangular matrices

M3 =


v3J0 v3J1 v3J2 . . .
0 v3J0 v3J1 . . .
0 0 v3J0 . . .
...

...
... . . .

 , M∗
3 =


v3(JM3)0 v3(JM3)1 v3(JM3)2 . . .

0 v3(JM3)0 v3(JM3)1 . . .
0 0 v3(JM3)0 . . .
...

...
... . . .

 ,

where Js, and (JM3)s, s = 0, 1, . . . denotes the s-th column of the matrix J and JM3, respectively.

Since we intend to take the approach of solving the equivalence system of Volterra integral
equations of (1.1), Computing IγT t is required. Therefore, employing the relations (2.1), (2.2) and
some simple manipulations yield

v1JT t = −K̄v1JM3AT t − K̄α̂v1JM∗
3AT t − d̄0v1JAT t + f

1
T t,

v2JT t = K̄v1JM3AT t + K̄α̂v1JM∗
3AT t − (d̄0 + κ̄)v2JAT t + f

2
T t,

v3JT t = α̂v2JAT t − (β̄ + d̄0 + δ̄)v3JAT t + f
3
T t,

v4JT t = δ̄v3JAT t − d̄0v4JAT t + f
4
T t.

(2.3)

Here f
j
= [fj,0, . . . , fj,N , . . .], j = 1, 2, 3, 4 and A are as follows

A =


0 1

Γ(γ+1) 0 . . .
... 0 Γ(τ+1)

Γ(γ+τ+1) 0 · · ·

· · · · · · . . . . . .

 , f
1
= [ā, 0, . . .]A+ [z

(0)
1 , 0, . . .],

f
2
= [z

(0)
2 , 0, . . .], f

3
= [b̄, 0, . . .]A+ [z

(0)
3 , 0, . . .], f

4
= [z

(0)
4 , 0, . . .].

It is noticed that Iγ is the Riemann-Liouville fractional integral operator of order γ [1]. Now,
Projecting (2.3) onto ⟨J (µ,ν,τ)

0 (t), ..., J
(µ,ν,τ)
N (t)⟩ and defining v

j
= vjJ = [vj,0, vj,1, . . . , vj,N ], we
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A. Faghih, P. Mokhtary

arrive at the following system of 4(N + 1) non-linear algebraic equations
v
1
= −K̄v

1
MN

3 AN − K̄α̂v
1
M∗N

3 AN − d̄0v1A
N + fN

1
,

v
2
= K̄v

1
MN

3 AN + K̄α̂v
1
M∗N

3 AN − (d̄0 + κ̄)v
2
AN + fN

2
,

v
3
= α̂v

2
AN − (β̄ + d̄0 + δ̄)v

3
AN + fN

3
,

v
4
= δ̄v

3
AN − d̄0v4A

N + fN
4
,

(2.4)

where the index N at the top of the vectors and matrices dictates the principle sub-vectors and
sub-matrices of order N+1 respectively. Due to the upper-triangular Toeplitz structure of matrices
MN

3 , M∗N
3 and the structure of matrix AN , the unknown components of the unknown vectors

v
j
, j = 1, 2, 3, 4, are derived through the following recurrence relations



v1,0 = f1,0, v2,0 = f2,0, v3,0 = f3,0, v4,0 = f4,0,

v1,i = −K̄G1,3 − K̄α̂Ĝ1,3 − d̄0F1 + f1,i0,

v2,i = K̄G1,3 + K̄α̂Ĝ1,3 − (d̄0 + κ̄)F2 + f2,i,

v3,i = α̂F2 − (β̄ + d̄0 + δ̄)F3 + f3,i,

v4,i = δ̄F3 − d̄0F4 + f4,i, i = 1, 2, . . . , N,

in which G1,3 and Ĝ1,3 are non-linear functions of the elements

v1,0, v1,1, . . . , v1,N , v2,0, v2,1, . . . , v2,N .

Also, Fs, s = 2, 3, 4 are linear functions of the elements vs,0, vs,1, . . . , vs,N . Consequently, obtaining
v
j
, j = 1, 2, 3, 4, the approximate solutions (2.1) can be characterized by solving v

j
= vjJ . Indeed,

our robust and intelligent implementation let us evaluate the unknowns by some recurrence relations
without the need to solve non-linear block algebraic system (2.4) directly.

3. Numerical example

Defining
E(N) = max

j∈{1,2,3,4}
∥ej,N∥w(µ,ν,τ) , ej,N = zj(t)− zj,N (t),

we approximate the solutions of (1.1) by setting the initial conditions z1(0) = 0.323, z2(0) = 0.21,
z3(0) = 0.22, z4(0) = 0.21 scaled in million and γ = 1

2 . The numerical results are illustrated in
Table 2.

Table 1: Description of the Parameters of model (1.1).

Parameter Description Value [2]
ā The population whose test is negative 0.00250281 millions
d̄0 Natural death rate 0.0000004/million
b̄ The population whose test is positive 0.006656 millions
β̄ Death due to Corona 0.0109
κ̄ The rate constant characterizing the infection 0.000024
α̂ Rate at which recovered individuals lose immunity 0.00009/million
δ̄ Recovered rete 0.75
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A spectral scheme for model of COVID-19 disease
Table 2: The numerical results for various values of µ, ν and N .

µ = ν = − 1
2

µ = 0, ν = 1
2

N E(N) CPU-time E(N) CPU-time
40 4.01× 10−6 2.27 1.61× 10−5 2.23
80 8.95× 10−9 25.53 3.06× 10−8 25.72
160 5.57× 10−14 312.39 1.61× 10−13 313.95
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A new preconditioner for the SOR method to solve
multi-linear systems

Afsaneh Hasanpour, Maryam Mojarrab

Abstract. The preconditioned techniques play a significant role in solving linear and multi-linear
systems. In this paper, we present a new preconditioner of the tensor splitting SOR method for
solving multi-linear systems with M-tensors. Numerical examples confirm our theoretical results
and the efficiency of our new preconditioner. It is apparent that the preconditioner can improve
the method in reducing the number of iterations and the CPU time.

1. Introduction

Recently, solving the multi-linear systems seems to be attractive in many engineering and scientific
computing researches [2], like image processing [3], tensor complementarity problem, and numerical
partial differential equations [4].

Suppose that A ∈ R[m,n] is an order m dimension n tensor and b is a vector in Rn. Consider the
following tensor equation

Axm−1 = b, (1.1)

where Axm−1 ∈ Rn is defined as

(Axm−1)i =
n∑

i2i3···in=1

aii2i3···inxi2xi3 · · ·xin , i = 1, 2, . . . , n,

where xi denotes the ith component of x ∈ Rn. Many theoretical analysis and algorithms have been
proposed for solving (1.1) [4].

The role of the preconditioning technique is clear in solving linear and multi-linear systems and
if a suitable preconditioner is chosen, the convergence rate of the method can be improved. Some
preconditioner for solving multi-linear systems were introduced in [5, 6]. In this paper, we propose
a new preconditioner for the SOR method which is constructed by combination of two existing
preconditioners.

This paper is organized as follows. In Section 2, a new preconditioner is prposed, and the
preconditioned SOR method is constructed. Some numerical examples are given in Section 3 which
illustrate the effectiveness and superiority of the new preconditioned iterative method. Finally,
Section 4 consists of conclusion.

Keywords: SOR method, Preconditioner, Multi-linear system, M-tensor.
AMS Mathematical Subject Classification [2010]: 65F08, 65F10.
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Preconditioned SOR method

2. Main Results

Li et al. [5] and Liu et al. [6] proposed two tensor preconditioners of the form Pα = I + Sα and
Pβ = I +Gβ, where:

Sα =


0 −α1a12···2 0 · · · 0
0 0 −α2a23···3 · · · 0
...

...
... . . . ...

0 0 0 · · · −αn−1a(n−1)n···n
0 0 0 · · · 0

 ,

and

Gβ =



0 0 0 · · · 0
−β1a21···1 0 0 · · · 0
−β2a31···1 0 0 · · · 0

...
...

... . . . ...
−βn−2a(n−1)1···1 0 0 · · · 0
−βn−1an1···1 0 0 · · · 0


.

and α = (αi), β = (βi) where αi and βi in R are parameters for i = 1, . . . , n− 1. In this paper we
combine this two preconditioner and propose a more effective preconditioner P = I + Sα +Gβ.

Consider the multi-linear system (1.1). Without loss of generality, we take all the diagonal
entries of the tensor A equal to 1. Applying a nonsingular matrix P as a preconditioner, we have

PAxm−1 = Pb. (2.1)

We consider Â = (I + Sα +Gβ)A and b̂ = (I + Sα +Gβ)b. Let

Â = D̂ − L̂ − F̂ , and A = Im − L− F ,

with D̂ = D̂Im, L̂ = L̂Im, where D̂ is the diagonal matrix and −L̂ is the strictly lower triangle
matrix of M(Â). Thus

Â = Im − L− F + SαIm − SαL − SαF +GβIm −GβL −GβF .

The SOR-type method for solving (2.1) can be written as

xk = (Tpxm−1
k−1 + qp)

[ 1
m−1

], k = 1, 2, . . . ,

where

Tp = M(Ep)−1Fp, Ep =
1

ω
(D̂ − ωL̂), Fp =

1

ω
((1− ω)D̂ + ωF̂), qp = M(Ep)−1Pb.

Theorem 2.1. Let A ∈ R[m,n] be a strong M-tensor. Then for the new preconditioner P , Â = PA
is a strong M-tensor for αi, βi ∈ [0, 1].

Proof. Since the off-diagonal entries of Â are non-positive for αi, βi ∈ [0, 1], so Â is a Z-tensor.
According to this fact that A is a strong M-tensor and A = E − F is a weak regular splitting,
Â = Ê−F̂ can be a weak regular splitting by considering Ê = (I+Sα+Gβ)E and F̂ = (I+Sα+Gβ)F .
Therefore Â is a strong M-tensor.

T
he

9t
h

Se
m

in
ar

on

Numerical Analysis and
its

A
pplications

١٣٠



A. Hasanpour, M. Mojarrab

3. Numerical examples

In this section, numerical examples are given to show the efficiency of the preconditioned SOR
method. The stopping criterion ∥ Axm−1 − b ∥≤ 10−10 is used and a maximum of 1000 iterations
is allowed. We take the starting vector x0 and right-hand side vector b equal to ones(n, 1). Finding
the optimal parameter ω, we search from 0.01 to 2 in the interval of 0.01. All the examples were
executed in double precision in MATLAB R2014a. We show the number of iterations by “Iter”
and the CPU time in second by “time” for the new preconditioned SOR (PSOR) and the SOR
and former preconditioned SOR (PαSOR and PβSOR) methods, respectively.

Example 3.1. Consider A ∈ R[3,n] and b ∈ Rn in which
a111 = annn = 1, a122 = an(n−1)(n−1) = −0.5,

aiii =
θ2

h2 + µ1

h + η, i = 2, 3, . . . , n− 1,

ai(i−1)i = ai(i−1)(i−1) = − θ2

4h2 +
µ2
2

2h , i = 2, 3, . . . , n− 1,

ai(i+1)i = ai(i+1)(i+1) = − θ2

4h2 +
µ2
2

2h , i = 2, 3, . . . , n− 1,

where
θ = 0.2, µ1 = 0.04, η = 0.04, µ2 = −0.04, h =

2

n
.

From [1], it is found that A is a strong M-tensor. Numerical results in Table 1 with different
sizes of A represent that the new preconditioned method is better than original ones and former
preconditioned SOR methods for solving M-tensor equation. .

Table 1: Numerical results of Example 3.1 with ωopt = 1.3

PSOR SOR PαSOR PβSOR

n Iter time Iter time Iter time Iter time
10 46 0.020 47 0.025 46 0.023 47 0.025
20 89 0.023 103 0.032 89 0.024 103 0.026
30 114 0.030 158 0.038 114 0.036 158 0.033
40 117 0.034 208 0.043 117 0.036 208 0.039
50 107 0.041 257 0.076 107 0.052 257 0.067

4. Conclusion

In this paper, we proposed a new preconditioner of the tensor splitting SOR method for solving
multi-linear systems with M-tensors. Numerical results show that our new preconditioner is more
effective than the original ones and prior preconditioner that we combined them.
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Accurately approximating flat functions by a new
transcendental RBF

Maryam Mohammadi, Mohammad Heidari

Abstract. It is well-known that the RBF method is increasingly more accurate on steeper gradient
surfaces and has difficulty accurately approximating flat functions. The apparent reason is that
the flat surfaces are represented by linear combinations of very large shape parameters c. But as
c becomes large, so does the condition number. In this paper, we first show that the Powers RBF
r is the best candidate for approximating univariate functions having zero curvature everywhere,
like lines. So for approximating flat functions having very small values of curvature, we introduce
a new transcendental RBF based on the hyperbolic tangent function as a smooth approximant to
ϕ(r) = r with higher accuracy and better convergence properties than the MQ RBF by decreasing
shape parameter c.

1. Introduction

Given a set of n distinct points {xj}nj=1 ⊂ Rd and corresponding data values {fj}nj=1, the RBF
interpolant is given by

s(x) =
n∑

j=1

λjϕ(∥x− xj∥), (1.1)

where ϕ(r), r ≥ 0, is some radial function (cf. e.g. [5]). The expansion coefficients λj are determined
from the interpolation conditions s(xj) = fj , j = 1, . . . , n, which leads to the symmetric linear
system Aλ = f , where A = [ϕ(∥xi − xj∥)]1≤i,j≤n . The existence of a solution is assured for positive
definite RBFs and also for conditionally positive definite RBFs by adding a lower degree polynomial
to (1.1). We can introduce a shape parameter as ϕ

(
r
c

)
allowing to scale the basis function ϕ

making it flatter as c → ∞ and spiky as c → 0. So for accurately approximating flat functions,
we need to use too large shape parameters which leads to highly ill-conditioned and even singular
coefficient matrices [2]. In this paper, we first show that the Powers RBF r is the best candidate for
approximating univariate functions having zero curvature everywhere, like lines. Then we introduce
a new transcendental RBF based on the hyperbolic tangent function converging so much faster than
the MQ RBF to r by decreasing c. So one can approximate both steep and gentle gradient surfaces
by not too much small values of c.

2. Main results

Let κ and τ denote curvature and torsion, respectively. The fundamental theorem of curve theory
is given as follows [3].

Keywords: RBF interpolation, Transcendental RBF, Flat surfaces, Curvature.
AMS Mathematical Subject Classification [2010]: 65D05, 65D12, 65D20.
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Accurately approximating flat functions by a new transcendental RBF

Theorem 2.1. Two space curves C and C∗ with nonzero curvature are congruent (i.e., differ
by the composition of a translation and a rotation) if and only if the corresponding arclength
parametrizations α, α∗ : [a, b] → R3 have the property that κ(s) = κ∗(s) and τ(s) = τ∗(s) for all
s ∈ [a, b].

In the sequel, we just consider the univariate functions i.e parametric vector-valued curves
α : [a, b] → R2. Investigating multivariate flat functions need a vast discussion on one of the most
important concepts in the geometry of surfaces called Gaussian curvature [4], which is beyond the
scope of this note and leave it to our further works.

Corollary 2.2. If α, α∗ : I −→ R2 are plane curves such that κα = κα∗, then α and α∗ are
congruent.

Proposition 2.3. A space curve is a line if and only if its curvature is 0 everywhere.

Theorem 2.4. Powers RBF ϕ(r) = r exactly approximates lines.

Proof. By considering ϕ(r) = r, the RBF interpolant (1.1) is given as

s(x) =
n∑

j=1

λj |x− xj |.

Now, according to the Corollary 2.2 and Proposition 2.3, it suffices to show that κ(s(x)) = 0. For
x1 < · · · < xi < x < xi+1 < · · · < xn, we have

κ(s(x)) =

∣∣∣∣ d2

dx2 (s(x))

∣∣∣∣(
1 +

(
d
dx (s(x))

)2
) 3

2

=
0(

1 +
(
λ1 + · · ·+ λi − (λi+1 + · · ·+ λn)

)2
) 3

2

= 0.

The case x = x1 and x = xn can be proved similarly.

Theorem 2.4 says that working with smooth approximants to ϕ(r) = r with high accuracy and
fast convergence properties leads to accurate approximations of flat functions having low small values
of curvature. In [1], we introduced the following new globally supported and infinitely differentiable
transcendental RBF, abbreviated by “RTH RBF”

ϕ(r) = r tanh
(r
c

)
, (2.1)

which is conditionally negative definite of order 1. It has the property

lim
c→0+

r tanh
(r
c

)
= r,

with much better convergence properties than the Multiquadric RBF (see Theorems 2.3 and 2.4
in [1]). In the next section, we show that the RTH RBF interpolation method leads to accurate
results for functions with both steep and gradient regions.
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3. Numerical Results

We now provide two examples which approves successful role of RTH RBF in approximating func-
tions with zero and small values of curvature. We take different values of the shape parameter c,
n = 200 equidistant center points and m = 125 equidistant evaluation points. We use the maxi-
mum absolute error norm L∞ = max

1≤i≤m
|fi− f̄i|, where f and f̄ represent the exact and approximate

solutions, respectively.

Example 3.1. In the first test problem, we approximate the direct line

f1(x) = x+ 1, x ∈ [−1, 1].

The L∞ error norms of the RTH RBF interpolation are given in Table 1. The relative error
distribution is plotted in Figure 1 using the RTH RBF interpolation method with c = 0.1. Numerical
results show that the results are in good agreement with the exact solution.

Table 1: L∞ error norms of RTH RBF interpolation; Example 3.1.

c 1 0.5 0.1 0.01 0.001 0.0001
L∞ 1.6× 10−8 1.01× 10−8 4.4× 10−9 3.1× 10−9 1.5× 10−11 0
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Figure 1: Relatives errors using the RTH RBF interpolation method for c = 0.1; Example 3.1.

Example 3.2. In the next test problem, we approximate the following function having both steep
and flat regions with corner features.

f2(x) = tanh(60x− 0.01), x ∈ [−1, 1].

The exact and approximate solutions of f2(x) using the RTH RBF interpolation method with
c = 0.1 and c = 0.01 are shown in Figure 2. Figure 2-(A) shows some oscillatory behaviour for
c = 0.1 in flat regions. But decreasing the shape parameter c completely removes oscillations and
approves the theory. The relative error distribution is plotted in Figure 3 using the RTH RBF
interpolation method with c = 0.01. Results show that we can simulate both steep and flat regions
with intermediate values of the shape parameter c.
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Figure 2: Exact and approximate solutions of f2(x) using the RTH RBF interpolation method for (A) c = 0.1 and
(B) c = 0.01; Example 3.2.
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Figure 3: Relatives errors using the RTH RBF interpolation method for c = 0.01; Example 3.2.

4. Conclusion

In this paper, a new globally supported and infinitely differentiable transcendental RBF named
“RTH RBF” is used for interpolation. Its fast convergence to the Powers RBF ϕ(r) = r leads to
accurate results for both steep and gentle gradient surfaces by not too much small values of the
shape parameter c. The given theory can be proved for the multivariate interpolation and used for
high dimensional surfaces. We leave this to our further works.

References

[1] M. Heidari, M. Mohammadi, S. De-Marchi, A shape preserving quasi-interpolation operator
based on a new transcendental RBF, Dolomites Research Notes on Approximation, 14 (2021)
56–73.

[2] E.J. Kansa, Multiquadrics-A scattered data approximation scheme with applications to com-
putational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential
equations, Computers & mathematics with applications, 19 (1990) 147–161.

T
he

9t
h

Se
m

in
ar

on

Numerical Analysis and
its

A
pplications

١٣۶



M. Mohammadi, M. Heidari

[3] B. Oneill, Elementary differential geometry, Elsevier, 2006.

[4] T. Shifrin, Differential geometry: a first course in curves and surfaces, University of Georgia,
2015.

[5] H. Wendland, Scattered data approximation, Cambridge university press, 2004.

Maryam Mohammadi
Faculty of Mathematical Sciences and Computer, Kharazmi University, Teheran, Iran
email address: m.mohammadi@khu.ac.ir

Mohammad Heidari
Faculty of Mathematical Sciences and Computer, Kharazmi University, Teheran, Iran
email address: Std_M.Heidari@khu.ac.ir

T
he

9t
h

Se
m

in
ar

on

Numerical Analysis and
its

A
pplications

١٣٧



The 9th Seminar on Numerical Analysis and its Applications

9-11 May 2022, University of Guilan, Rasht, Iran

Extended minimal residual biconjugate gradient stablilized
method for generalized coupled Sylvester tensor equations

Mohammad Mahdi Izadkhah

Abstract. In this paper, a BiCG-like iterative method-minimal residual biconjugate gradient sta-
blilized (MRBiCGStab)- is extended for solving the generalized coupled Sylvester tensor equations.
The presented method uses tensor computations with no matricizations included. The reported
numerical experiments show the performance of the proposed method.

1. Introduction

In this paper, we are concerned with the generalized coupled Sylvester tensor equations of the form
n∑

j=1

Xj ×1 Aij1 ×2 Aij2 · · · ×N AijN = Ci, i = 1, 2, . . . , n, (1.1)

where the matrices Aijl ∈ CIijl×Iijl , (i, j = 1, 2, . . . , n, l = 1, 2, . . . , N), and the tensors Ci ∈
CIi1×···×IiN (i = 1, 2, . . . , n) are known and the tensors Xi ∈ CIi1×···×IiN (i = 1, 2, . . . , n) are unknown.
In fact, for a positive integer N , an order N tensor A = (ai1···iN )(1 ≤ ij ≤ Ij , j = 1, . . . , N) is a
multidimensional array with I1I2 · · · IN enteries. O with all enteries zero denotes the zero tensor.
We use k-mode product ×k(k = 1, 2, . . . , N) in (1.1) that will be defined later. In the sequel, some
basic definitions which will be used, are given from [3].

Definition 1.1. The operator ×k(k = 1, 2, . . . , N) represent the k-mode product of a tensor X ∈
CI1×···×IN with a matrix A ∈ CJ×Ik defined as

(X ×k A)i1i2···ik−1jik+1···iN =

Ik∑
ik=1

xi1i2···ik−1ikik+1···iNajik .

Definition 1.2. For a tensor A = (ai1···iN j1···jM ) ∈ CI1×···×IN×J1×···×JM , let B = (bi1···iM j1···jN ) ∈
CJ1×···×JM×I1×···×IN be the conjugate transpose of A, where bi1···iM j1···jN = āj1···jN i1···iM . The tensor
B is denoted by A∗. When bi1···iM j1···jN = aj1···jN i1···iM , B is called the transpose of A, denoted by
AT .

Definition 1.3. Let N and M be positive integers. The inner product of two tensors X ,Y ∈
CI1×···×IN×J1×···×JM is defined by

⟨X ,Y⟩ =
I1∑

i1=1

· · ·
IN∑

iN=1

J1∑
j1=1

· · ·
JM∑

jM=1

xi1···iN j1···jM ȳj1···jM i1···iN .

Keywords: tensor equations, MRBiCGStab, iterative method, k-mode product.
AMS Mathematical Subject Classification [2010]: 15A10, 15A69, 15A72, 65F10.
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Extended MRBiCGStab method

So the tensor norm generated by this inner product is ∥X∥ =
√

⟨X ,X⟩ which is called the tensor
Frobenius norm.

Definition 1.4. Let Xi,Yi ∈ CI1×···×IN×J1×···×JM , for i = 1, 2, . . . , n. If we put X = (X1,X2, . . . ,Xn)
and Y = (Y1,Y2, . . . ,Yn), then ⟨⟨X,Y⟩⟩ =

∑n
i=1⟨Xi,Yi⟩ is an inner product and the associated norm

is defined by ∥X∥∗ =
√

⟨⟨X,X⟩⟩ =
√∑n

i=1 ∥Xi∥2.

We say that X and Y are orthogonal if and only if ⟨⟨X,Y⟩⟩ = 0.

Definition 1.5. Let Hi = CIi1×···×IiN (i = 1, 2, . . . , n). Then

L : H1 ×H2 × · · · ×Hn −→ H1 ×H2 × · · · ×Hn

L(X1,X2, . . . ,Xn) =


∑n

j=1Xj ×1 A1j1 ×2 A1j2 · · · ×N A1jN∑n
j=1Xj ×1 A2j1 ×2 A2j2 · · · ×N A2jN

· · ·∑n
j=1Xj ×1 Anj1 ×2 Anj2 · · · ×N AnjN

 .

According to Definition 1.5, the inear system (1.1) can be expressed as L(X1,X2, . . . ,Xn) = C,
where C = (CT

1 , CT
2 , . . . , CT

n )
T . We use Definition 1.4 and operator L in Definition 1.5 to construct

the k-th residual tensor of EMRBiCGStab method Rk = C −L(X1,k,X2,k, . . . ,Xn,k) where Xi,k, i =
1, 2, . . . , n are k-th approximations for the tensor solutions Xi, i = 1, 2, . . . , n.

2. Extended MRBiCGStab Method

In the special case of (1.1), Beik et al. have developed the gradient-based iterative method [1].
We would like to mention that in the BiCGStab method for solving the system Ax = b, the
product of the linear polynomials are considered in construction of the residual form. In order
to overcome the stagnation of convergence of BiCGStab in some discretized dominated problems,
quadratic stabilization polynomials are used in the MRBiCGStab algorithm [4]. The MRBiCGStab
method computes an approximation x2k whose residual is of the form r∗2k = Q∗

2k(A)P2k(A)r0, where
Q∗

0(t) = 1 and for k ≥ 1 Q∗
2k(t) = (1+w1t+w2t

2)(1+w3t+w4t
2) · · · (1+w2k−1t+w2kt

2) and the
parameters w2k−1 and w2k are determined at the k-th iteration so that ∥r∗2k∥ is minimized. Based
on this algorithm, we propose the Extended MRBiCGStab algorithm according to the tensor form
for solving (1.1). Since the ∥R∗

k+2∥∗ is minimized over two dimensional vector space R2, it may
be expected that the extended MRBiCGStab converges faster than the BiCGStab in which residual
norm is minimized over one dimensional vector space R.

3. Numerical example

In this section, we give numerical results of the EMRBiCGStab method to solve the following
problem

X ×1 A1 ×2 A2 ×3 A3 + Y ×1 B1 ×2 B2 ×3 B3 = C1,
X ×1 E1 ×2 E2 ×3 E3 + Y ×1 F1 ×2 F2 ×3 F3 = C2,

which show the effectiveness of the proposed algorithm. The matrices Ai, Bi, Ei, Fi, i = 1, 2, 3 have
been chosen from [2] by the Matlab function rand of appropriate size, and construct the right-hand
side tensors Ci, i = 1, 2 such that the exact solutions X ∗,Y∗ ∈ Cm×n×l would be tensors with all
enteries equal to one. The initial guess was taken to be the zero tensors and the stopping criterion
∥R∗

k∥∗
∥R∗

0∥∗
≤ 10−6 or Max-iteration = 2000 were used. The corresponding convergence histories of

EMRBiCGStab method with EBiCG [2] method are depicted in Figure 1.

T
he

9t
h

Se
m

in
ar

on

Numerical Analysis and
its

A
pplications

١٣٩



M. M. Izadkhah

Algorithm 1 The Extended MRBiCGStab method for solving (1.1)
1. Input: matrices Aijl and tensors Xj,0, Ci, for i, j = 1, 2, . . . , n and l = 1, 2, . . . , N

2. Compute R∗
i,0 = Ci −

∑n
j=1 Xj,0 ×1 Aij1 ×2 Aij2 · · · ×N AijN , i = 1, 2, . . . , n

3. Put P∗
i,0 = R∗

i,0, i = 1, 2, . . . , n

4. Choose arbitrary tensors R̃i,0 such that
∑n

i=1⟨R̃i,0,R∗
i,0⟩ ̸= 0, for i = 1, 2, . . . , n

6. For k = 0, 2, . . . , 2m, . . . until ∥R∗
k+2∥∗ small enough Do

7. Compute V∗
i,k =

∑n
j=1 P

∗
j,k ×1 Aij1 ×2 Aij2 · · · ×N AijN , for i = 1, 2, . . . , n

8. αk =
∑n

i=1⟨R
∗
i,k,R̃i,0⟩∑n

i=1⟨V
∗
i,k

,R̃i,0⟩

9. X̄i,k+1 = Xi,k + αkP∗
i,k, for i = 1, 2, . . . , n

10. R̄i,k+1 = R∗
i,k − αkV∗

i,k, for i = 1, 2, . . . , n

11. Compute R̂i,k+1 =
∑n

j=1 R̄j,k+1 ×1 Aij1 ×2 Aij2 · · · ×N AijN , i = 1, 2, . . . , n

12. βk = −αk

∑n
i=1⟨R̂i,k+1,R̃i,0⟩∑n
i=1⟨R

∗
i,k

,R̃i,0⟩

13. P̄i,k+1 = R̄i,k+1 + βkP∗
i,k, for i = 1, 2, . . . , n

14. P̂i,k+1 = R̂i,k+1 + βkV∗
i,k, for i = 1, 2, . . . , n

15. P̂∗
i,k+1 =

∑n
j=1 P̂j,k+1 ×1 Aij1 ×2 Aij2 · · · ×N AijN , for i = 1, 2, . . . , n

16. αk+1 =
∑n

i=1⟨R̂i,k+1,R̃i,0⟩∑n
i=1⟨P̂

∗
i,k+1

,R̃i,0⟩

17. X̄i,k+2 = X̄i,k+1 + αk+1P̄i,k+1, for i = 1, 2, . . . , n

18. R̄i,k+2 = R̄i,k+1 − αk+1P̂i,k+1, for i = 1, 2, . . . , n

19. R̂i,k+2 = R̂i,k+1 − αk+1P̂∗
i,k+1, for i = 1, 2, . . . , n

20. R̂∗
i,k+2 =

∑n
j=1 R̂j,k+2 ×1 Aij1 ×2 Aij2 · · · ×N AijN , for i = 1, 2, . . . , n

21. wk+1 =
(
∑n

i=1⟨R̂i,k+2,R̂∗
i,k+2⟩)(

∑n
i=1⟨R̄i,k+2,R̂∗

i,k+2⟩)−(
∑n

i=1⟨R̄i,k+2,R̂i,k+2⟩)(
∑n

i=1⟨R̂
∗
i,k+2,R̂

∗
i,k+2⟩)

(
∑n

i=1⟨R̂i,k+2,R̂i,k+2⟩)
(∑n

i=1⟨R̂
∗
i,k+2

,R̂∗
i,k+2

⟩
)
−
(∑n

i=1⟨R̂i,k+2,R̂∗
i,k+2

⟩
)(∑n

i=1⟨R̂i,k+2,R̂∗
i,k+2

⟩
)

22. wk+2 =
(
∑n

i=1⟨R̂i,k+2,R̂i,k+2⟩)(
∑n

i=1⟨R̄i,k+2,R̂∗
i,k+2⟩)−(

∑n
i=1⟨R̄i,k+2,R̂∗

i,k+2⟩)(
∑n

i=1⟨R̄i,k+2,R̂i,k+2⟩)(∑n
i=1⟨R̂i,k+2,R̂∗

i,k+2
⟩
)(∑n

i=1⟨R̂i,k+2,R̂∗
i,k+2

⟩
)
−(

∑n
i=1⟨R̂i,k+2,R̂i,k+2⟩)

(∑n
i=1⟨R̂

∗
i,k+2

,R̂∗
i,k+2

⟩
)

23. Xi,k+2 = X̄i,k+2 − wk+1R̄i,k+2 − wk+2R̂i,k+2, for i = 1, 2, . . . , n

24. R∗
i,k+2 = R̄i,k+2 + wk+1R̂i,k+2 + wk+2R̂∗

i,k+2, for i = 1, 2, . . . , n

25. βk+1 = −αk+1

∑n
i=1⟨R̂

∗
i,k+2,R̃i,0⟩∑n

i=1⟨R̂i,k+1,R̃i,0⟩

26. P∗
i,k+2 = R∗

i,k+2 + βk+1(P̄i,k+1 + wk+1P̂i,k+1 + wk+2P̂∗
i,k+1), for i = 1, 2, . . . , n

27. EndDo

28. Output: solution Xj for (1.1)
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Extended MRBiCGStab method
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Figure 1: Convergence histories of REE for m = 6, n = 4, l = 3(left) and m = 8, n = 4, l = 3(right)
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An efficient Lucas wavelet Galerkin method for solving
time-delay optimal control problems

Sedigheh Sabermahani, Yadollah Ordokhani, Farshid Nourian, Mehrdad
Lakestani

Abstract. Here, we present a numerical scheme to solve optimal control problems with time-
varying delay system. This method is based on Lucas wavelets and Galerkin method. Operational
matrices of integration and delay for Lucas wavelets are proposed. Then, Galerkin method is used
to solve the mentioned problems . Numerical results are included to demonstrate the efficiency of
the present technique.

1. Introduction

One of important class of delay problems is optimal control problems that are used to model
many of the phenomena. Furthermore, there are several numerical methods to solve delay optimal
control problems such as Variational iteration method [1] and finite difference method [2]. In
recent years, the construction and application of different wavelets such as Bernoulli wavelet [3],
Fibonacci wavelet [4], Legendre wavelet [5] has been shown to be a powerful mathematical tool for
discretization of selected problems.

In this work, we apply the extended Lucas wavelets for solving fractional delay optimal control
problems. To this end, we approximate the fractional derivative of the state variables and control
variables in terms of these wavelets. We present new fractional integration and delay operational
matrices for these functions. Then, by employing the operational matrices and Galerkin method,
the problems under consideration are converted into systems of algebraic equations. The validity
of the established methods is studied in one example.

2. Lucas wavelets and properties

The Lucas wavelets are defined over the interval [0, 1] in [6]. We present a new presentation of these
functions in the following form

ψn,m(t) =
2

k−1
2

√
wm

L̃m(2k−1t− n+ 1)χ[ n−1

2k−1 ,
n

2k−1 ]
(t), n = 1, 2, . . . , 2k−1, m = 0, 1, . . . ,M − 1, (2.1)

and χ[ n−1

2k−1 ,
n

2k−1 ]
(t) is the characteristic function, wm =

∫ 1
0 L̃

2
m(t)dt, and L̃m(t),m = 0, 1, . . . ,M − 1

denotes the Lucas polynomials. n = 1, 2, . . . , 2k−1 and k is a positive integer. Also, L̃0(t) = 2,

L̃m(t) =
∑⌊m

2
⌋

i=0
m

m−i

(
m− i
i

)
tm−2i.

Keywords: Lucas wavelet, Galerkin method, optimal control problem, time-varying delay system.
AMS Mathematical Subject Classification [2010]: 65T60, 44A45, 49N05.
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2.1. Integration operational matrix of Lucas wavelets

Let
Ψ(t) = [ψ1,0, ψ1,1, . . . , ψ1,M−1, ψ2,0, ψ2,1, . . . , ψ2,M−1, . . . , ψ2k−1,0, . . . , ψ2k−1,M−1]

T ,

be Lucas wavelets vector. The integration operational matrix of Lucas wavelets P̃ is defined as∫ t
0 Ψ(s)ds ≃ P̃Ψ(t), each of element of this matrix is derived in the following process

ψn,m(t) =
2

k−1
2

√
wm

L̃m(2k−1t− n+ 1)χ[ n−1

2k−1 ,
n

2k−1 ]
(t)

=
2

k−1
2

√
wm

⌊m
2
⌋∑

i=0

m−2i∑
j=0

(
m− i
i

)
m

m− i
2kj−jtj(1− n)m−2i−jχ[ n−1

2k−1 ,
n

2k−1 ]
(t).

Now, using the above relation, we get∫ t

0
ψn,m(s)ds =

2
k−1
2

√
wm

⌊m
2
⌋∑

i=0

m−2i∑
j=0

(
m− i
i

)
m

m− i
2kj−j(1− n)m−2i−j

∫ t

0
sjχ[ n−1

2k−1 ,
n

2k−1 ]
(s)ds

=
2

k−1
2

√
wm

⌊m
2
⌋∑

i=0

m−2i∑
j=0

(
m − i

i

) m

m− i
2kj−j(1− n)m−2i−jθj(t),

θj(t) =

∫ t

0
sjχ[ n−1

2k−1 ,
n

2k−1 ]
(s)ds =

∫ t

n−1

2k−1

sjdsχ[ n−1

2k−1 ,
n

2k−1 ]
(t) +

∫ n

2k−1

n−1

2k−1

sjdsχ[ n

2k−1 ,1]
(t),

Here, we expand this function in terms of Lucas wavelets as θj(t) =
∑2k−1

s=1

∑M−1
p=0 bs,pψs,p(t). There-

fore, we achieve
∫ t
0 ψn,m(s)ds =

∑2k−1

s=1

∑M−1
p=0 Θn,m

s,p ψs,p(t),

Θn,m
s,p =

2
k−1
2

√
wm

⌊m
2
⌋∑

i=0

m−2i∑
j=0

(
m− i
i

)
m

m− i
2kj−j(1− n)m−2i−jbs,p (2.2)

2.2. Delay operational matrix of Lucas wavelets

We suppose that τ = s
2k−1 , then Ψ(t− τ) = D̃Ψ(t), t > τ . For this approach, we have

ψn,m(t− τ) =

{
2
k−1
2√
wm

L̃m(2k−1(t− τ)− n+ 1), n−1
2k−1 ≤ t− τ < n

2k−1 ,

0, otherwise

=

{
2
k−1
2√
wm

L̃m(2k−1t− (n+ s) + 1), n−1+s
2k−1 ≤ t < n+s

2k−1 ,

0, otherwise
= ψm,n+s(t).

3. Numerical method

Here, we consider
X

′
(t) = A(t)X(t) +B(t)X(t− τ) +G(t)U(t) +H(t)U(t− τ), t ∈ [0, 1],

X(0) = X0,
X(t) = ϕ1(t), t ∈ [−τ, 0),
U(t) = ϕ2(t), t ∈ [−τ, 0).

(3.1)
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where X(t) ∈ Rl, U(t) ∈ Rq, (l ≥ q) A(t), B(t), G(t) and H(t) are continuous matrices with
appropriate dimensions, X0 is constant vector and ϕ1(t) and ϕ2(t) are known functions defined on
the interval [−τ, 0). In Eq. (3.1), we derive X(t) and optimal control U(t) which are satisfied in
conditions of problem while extremizing J

J = XT (1)Q(1)X(1) +

∫ 1

0

[XT (t)Q(t)X(t) + UT (t)R(t)U(t)]dt, (3.2)

where Q(t), R(t) are matrix functions with appropriate dimensions. Also, Q(t) is a symmetric
positive-semi-definite matrix and R(t) is a symmetric positive-definite matrix. Assume that X(t) =
[X1(t), X2(t), · · · , Xl(t)]

T , U(t) = [U1(t), U2(t), · · · , Uq(t)]
T , and [Ψ̃l(t) = Il ⊗Ψ(t), Ψ̃q(t) = Iq ⊗

Ψ(t), where Il, Iq are the l-dimensional and q-dimensional identity matrices and ⊗ denotes Kronecker
product. Moreover Ψ̃l(t) and Ψ̃q(t), i = 1, 2, . . . , l, j = 1, 2, . . . , q are l2k−1M × l and q2k−1M × q
matrices. We approximate as X

′
i(t) = XT

i Ψ(t), Uj(t) = UT
j Ψ(t). Therefore, we get X

′
(t) =

XT Ψ̃l(t), U(t) = UT Ψ̃q(t), and for X(t), we can see that X(t) = XT P̂ Ψ̃l(t) + ÊT Ψ̃l(t), where
P̂ = Il⊗P̃ , Ê = Il⊗Ẽ and X(0) ≃ ẼTΨ(t). Also, using delay operational matrix of Lucas wavelets,
we expand X(t− τ) and U(t− τ) in terms of them as

X(t− τ) =


ϕ1(t− τ), 0 ≤ t ≤ τ

XT P̂ D̂lΨ̃l(t) + ÊT D̂lΨ̃l(t), τ ≤ t ≤ 1,

U(t− τ) =


ϕ2(t− τ), 0 ≤ t ≤ τ

UT D̂qΨ̃q(t), τ ≤ t ≤ 1,

where D̂q = Iq ⊗ D̃, D̂l = Il ⊗ D̃ and D̃ is delay operational matrix of Lucas wavelets. Moreover,
we approximate A(t), B(t), G(t), and H(t). We substitute the approximations in the system then
we derive Φ̃(t). The resulting equation can be solved using Galerkin method Y = ⟨Φ̃,Ψ⟩. Also, we
substitute the mentioned approximations and the performance index J , so we have J⋆ = J + λTY,
where λ = [λn,m] n = 1, 2, . . . , 2k−1, m = 0, 1, . . . ,M − 1 are the unknown multipliers coefficients.
For deriving extremum of J⋆, the necessary condition is that the following equations hold ∂J⋆

∂X =

0, ∂J⋆

∂U = 0, ∂J⋆

∂λ = 0. We can solve these equations using ”FindRoot” package in Mathematica
software.

4. Numerical results

Example. Consider J = 3
2X

2(2) + 1
2

∫ 2
0 U

2(t)dt, subject to the time-delay system

X
′
(t) = X(t) +X(t− 1) + U(t), 0 ≤ t ≤ 2, X(t) = 1, −1 ≤ t ≤ 0,

in which the analytic solution for U(t) is U(t) =
{

δ(e2−t + (1 − t)e1−t), 0 ≤ t ≤ 1,

δe2−t, 1 ≤ t ≤ 2.
and with δ = −0.3932,

J ≃ 3.1017 [4]. This example solved by several numerical techniques such as variational iteration
method [1] and finite difference method [2] with h = 0.01. In Table 1, these numerical results are
compared to the results obtained using the present method for different values of k,M .
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Table 1: Comparison of the value of J , in Example.
Numerical methods J

Variational iteration method [1] 3.1091
Finite difference method [2] 3.102519
Present technique (k=3, M=6) 3.10078
Present technique (k=3, M=8) 3.10101
Exact value 3.1017
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Numerical solution of mixed fractional heston partial
differential equation

Fereshteh Goldoust

Abstract. In this work the Mixed Fractional Heston partial differential equation option pricing
model considered and Legendre wavelet method (LWM) use to solve this equation with reducing
feature the PDEs problem into the solution of ODEs system. The wavelet base is used in approxi-
mation due to its simplicity and efficiency. Some numerical schemes has compared with the LWM
in result.

1. Introduction

Since the Black-Scholes model was introduced forty years ago, practitioners and academics have
been proposing refinements there of in order to take into account the specific behaviour of market
data. In particular, stochastic volatility models, turning the constant Black-Scholes instantaneous
volatility of returns into a stochastic process, have been studied and used heavily [1–3].The Heston
Model is one of the most widely used stochastic volatility (SV) models today. Its attractiveness lies
in the powerful duality of its tractability and robustness relative to other SV models [4]. To remedy
this issue, several authors have suggested the addition of jumps, either in the form of an independent
Levy process or within the more general framework of affine processes [5–7]. In continuous time,
this long-memory behaviour has been modelled through fractional Brownian motion with Hurst
exponent strictly greater than 1/2 [8, 9]. Fractional Brownian motion has its pitfalls though, since
it is not a semimartingale,and yields arbitrage opportunities [10].

2. Mixed Fractional Heston Model

One of the most widely used random processes in financial market modeling is the use of memory
processes.Which includes fractional Brownian motion and its derivative process. This process is the
generalization of a parameter of standard Brownian motion ,and this parameter is named after the
English researcher Harold Edwin Hurst with H ∈ (0, 1). In the case where H = 1

2 , the Brownian
motion of the fraction corresponds to the standard Brownian motion [11–13].

2.1. Fractional Brownian motion

The purpose of adding the long-run dependency feature to the geometric Brownian model is to
obtain a European stock price dependent on a stock whose dynamics follow the fractional geometric
model. The fractional geometric Brownian model is

dS(t) = µS(t)dt+ σS(t)dBH(t), (2.1)
Keywords: Stochastic differential equation, Partial differential equation, Mixed Fractional Heston Model, Legendre
Wavelet Method (LWM).

AMS Mathematical Subject Classification [2010]: 13F55, 05E40, 05C65 .
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Numerical solution of mixed fractional Heston

Where µ is the expected return on the stock and σ, stock price volatility and BH(t) are the
Brownian deficit.

2.2. Mixed Fractional Heston partial differential equation

To fit a real market, generalizations to the geometric Brownie model are needed, one of which is
random volatility models. In this type of model, volatility is considered as a positive process. So if
the price (discounted) of the commodity is at risk, in the differential equation

dS(t) = µS(t)dt+ σS(t)dW (t). (2.2)

Now, if the turbulence of the Discounted Feynman-Kac Theorem [14–16] follows the Cox-Ingersell
process, where µ, expected stock returns, k, average volatility return rate, η, long-term volatility
average, σ, Heston model volatility, B1,t and B2,t are standard Brownian motions with a correlation
coefficient of ρ, which are ρ ∈ (−1, 1) , And S(t) and V (t) are stock prices and volatility rates,
respectively. 

dS(t) = µS(t)dt+
√
V (t)S(t)dM1,H(t),

dV (t) = k(η − V (t))dt+ σ
√
V (t)dM2,H(t),

dM1,H(t)dM2,H(t) = ρ(dt+ α2Ht2H−1dt).

(2.3)

Where M1,H
t and M2,H

t , are fractional mixed Brownian with H ∈ (34 , 0), is a Hurst parameter.
By applying ITOs lemmaThe Mixed Fractional Heston partial differential equation pricing model

as follows
∂u

∂t
+ vs2(t)(1 + α2Ht2H−1)

∂2u

∂s2
+ σ2v(1 + α2Ht2H−1)

∂2u

∂v2

+σvsρ(1 + α2Ht2H−1)
∂2u

∂s∂v
− η

∂u

∂v
− ru+ rs

∂u

∂s
. (2.4)

3. Metodology

The wavelet basis is constructed from a single function, which is called the mother wavelet. Legendre
differential equation [17–20]. One dimension Legendre wavelets over the interval [0, 1] defined as

ψn,m(x) =

{√
(m+

1

2
)2

k

2Pm(2kx− 2n+ 1),
n− 1

2k−1
≤ x ≤ n

2k−1
,0, o.w. (3.1)

With n = 1, 2, ..., 2k − 1,m = 0, 1, 2, ...,M − 1. In Eq. (3.1) {Pm}’s are ordinary Legendre
functions of order m is defined over the interval[−1, 1]. Legendre wavelet is an orthonormal set as∫ 1

0
ψn,m(x)ψn′,m′(x)dx = δn,n′δm,m′ . (3.2)

Any element f ∈ L2([0, 1]), may be expanded as

f(x) ∼=
∞∑
n=1

∞∑
m=0

Cn,mψn,m(x), (3.3)
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With boundary condition u(s, v, 0) = β1(s, v, t) and ∂u(s, v, 0)

∂t
= β2(s, v, t),

∂u

∂t
= CT

1 (s, v, t)ψ(s, v, t), (3.4)

u(s, v, t) = CT
1 (s, v, t)Pψ(s, v, t) + β2(u, s, t). (3.5)

Substituting (3.4) and (3.5) in (2.4), we obtain

CT (s, v, t) =α1(
∂2CT (s, v, t)

∂s2
Pψ(s, v, t) +

d2β2(u, s, t)

ds2
dTψ)

+ α2(
∂2CT (s, v, t)

∂v2
Pψ(s, v, t) +

d2β2(u, s, t)

dv2
dTψ)

+ α3(
d

ds

dCT (s, v, t)

dv
Pψ(s, v, t) +

d

ds

dβ2(u, s, t)

dv
dTψ)

+ α4(
∂CT (s, v, t)

∂s
Pψ(s, v, t) +

dβ2(u, s, t)

ds
dTψ)

+ α5(
∂CT (s, v, t)

∂v
Pψ(s, v, t) +

dβ2(u, s, t)

dv
dTψ)

− α6(C
T (s, v, t)Pψ + β2d

Tψ),

which 1 = dTψ(s, v, t).

4. Results

The Mixed Fractional Heston partial differential equation pricing model can be solved for unknown
coefficients of the vector, in this case, Adomian decomposition method have used [21]. Consequently,
the solution can be calculated C(s, v, t).

Table 1: The values of parameters.

ρ δ η α H

0.06 0.04 0.12 0.2 3/4
0.1 0.9 0.2 0.5 3/4

5. Conclusion

The Legendre wavelet method has been applied to solve the Mixed Fractional Heston partial dif-
ferential equation pricing model which these PDE equations have been derived from stochastic
differential equations by using one of the important stochastic calculous Lemma named Ito. Also in
this work results of LWM have been compared with the Adomian Decomposition Method (ADM).
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Figure 1: Solution Mixed Fractional Heston PDE model by LWM & ADM
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Stable Gaussian elimination algorithm for ill-conditioned
banded toeplitz

Nasser Akhoundi

Abstract. In this paper, banded Toeplitz matrices generated by f(θ) = (2(1 − cos(θ − θ̃)))d

are studied. The function f is a real non-negative function with a zero of order 2d at θ̃. Hence
the generating matrix is an ill-conditioned Hermitian positive definite matrix. We propose an O(n)
recursive Gaussian elimination algorithm to solve the linear systems with these matrices. Numerical
experiments show that our proposed method is faster and more stable than the stable Levinson
algorithm.

1. Introduction

Toeplitz matrices Tn =
(
ti−j

)
i,j=1,...,n

can be interpreted as Fourier coefficients of the generating
function f(θ) =

∑∞
−∞ tke

ikθ, defined on [−π, π], i.e., tk = 1
2π

∫ π
−π f(θ)e

−ikθdθ for k = 0,±1,±2, . . .
. If the generating function f(θ) is non-negative and real, then Tn is Hermitian positive definite
(HPD) matrix, furthermore for the even function f , The Toeplitz matrix Tn is real and symmetric.

In this paper we assume that

f(θ) = (2(1− cos(θ − θ̃)))d, (1.1)

where θ̃ ∈ [−π, π] is a constant number. In this case we name the generated Toeplitz matrix by T
(d)

θ̃,n
.

T
(d)

θ̃,n
is banded HPD, with bandwidth 2d− 1. For the special case θ̃ = 0 we omit the subscript θ̃ in

T
(d)

θ̃,n
and we name it T

(d)
n . These linear systems arise in the discretization of diferential equations.

In [3] the authors show that for general generating function f where |f | has zeros of even order,
their singularity lies in banded Toeplitz generated from 1.1 and these banded Toeplitz matrices
can be perform as a good preconditioner. Function f in (1.1) has zero of order 2d at θ̃, hence the
condition number of these matrices can be very large. As an example for d = 2, in [1], the authors
showed that the condition number of these matrices is about 162(n+2

3π )4.

2. Main Results

We use the following theorem [4] to describe our Gaussian elimination method.

Theorem 2.1. Let T
(d)

θ̃,n
be an n-by-n, banded Toeplitz matrix with bandwidth 2d − 1 generated by

f(θ) = (2(1− cos(θ − θ̃)))d. Then

T
(d)

θ̃,n
= T

(d−1)

θ̃,n
T
(1)

θ̃,n
− wa

(d−1)

θ̃
eT1 − w̄J ā

(d−1)

θ̃
eTn , (2.1)

Keywords: Toeplitz matrices, Fast Toeplitz solver, Levinson Algorithm.
AMS Mathematical Subject Classification [2010]: 65F05, 15B05 , 65F15.
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Stable Gaussian elimination algorithm for ill-conditioned banded toeplitz

where
a
(d−1)

θ̃
= ZTT

(d−1)

θ̃,n
(1 : n, 1),

and Z is the down shift matrix zij = δi−j,1 (δi,j is the Kronecker delta).

Let w = eiθ̃ and define the unitary diagonal matrix Ω = diag
(
1, w, w2, . . . , wn−1

)
, then T

(1)

θ̃,n
=

Ω′T
(1)
n Ω. Hence if we let θ̃ = 0 in (2.1) we have

T (d)
n = T (d−1)

n T (1)
n − a(d−1)eT1 − Ja(d−1)eTn , (2.2)

where a(d−1) = ZTT
(d−1)
n (1 : n, 1). We define

H(d−1)
n = T−(d−1)

n T (d)
n (2.3)

= T (1)
n − wc(d−1)eT1 − w̄J c̄(d−1)eTn (2.4)

=

−c1 − 2 −eT1 −cn
d T

(1)
n−2 Jd

−cn−1 −eTn−2 −c1 − 2

 , (2.5)

where T
(d−1)
n c(d−1) = a(d−1) and c(d−1) =

(
c1 d cn

)T . Relation (2.1), is the core of our algorithm
to solve the linear system T

(d)
n x(d) = b. In fact we can define the following recursive linear systems

to solve T
(d)
n x = b.

T d
nx

(d) = b⇒ T−(d−1)
n T d

nx
(d) = T−(d−1)

n b = x(d−1) (2.6)
H(d−1)

n x(d) = x(d−1) ⇒ · · · (2.7)
H(1)

n x(d) = x(1) (2.8)

To construct the linear system H
(d−1)
n x(d) = x(d−1) and then solving it, we need to compute

T
(d−1)
n x(d−1) = b, and T

(d−1)
n c(d−1) = a(d−1). Again we can compute them recursively. Lastly

we need to solve T
(1)
n c(1) = a(1) and T

(1)
n x(1) = b. As we know, T (1)

n = tridiag(−1, 2,−1). By simple
calculation we can see that, the regular Gaussian elimination for this matrix can be performed as
follows.

The complexity of Algorithm 1 is O(n), and for all k > 1, 1 < a(k) < 2, so this algorithm is
stable. The procedure to compute T

(d)
n x(d) = b is described in Algorithm 2.

The matrix H
(d−1)
n = T

(1)
n −c(d−1)eT1 −Jc(d−1)eTn coincides with the matrix T

(1)
n except the first

and last column. If we define the permutation matrix En as

En =

0n−2 In−2 0n−2

1 0Tn−1 0
0 0Tn−1 1

 , (2.9)

then H̃n = EnHnE
T
n has the following structure

H̃n =

(
T
(1)
n−2 R
S T

)
, (2.10)

where R =
(
d Jd

)
, S =

(
−e1 −en−2

)T , and

T =

(
−b1 − 2 −bn
−bn −b1 − 2

)
. (2.11)

Hence, we can solve the linear system H
(d−1)
n x(d−1)x(d) = x(d−1) in line 9 Algorithm 2 by the

Gaussian elimination (Algorithm 1.) in O(n).

T
he

9t
h

Se
m

in
ar

on

Numerical Analysis and
its

A
pplications

١۵٢



N. Akhoundi

Algorithm 1 Gaussian elimination algorithm to solve T
(1)
n x = b

1 Set a(1) = 2.

2 For k = 2 : n

3 a(k) = 2− 1
a(k−1)

4 b(k) = b(k)− a(k − 1) ∗ b(k − 1)

5 EndFor

6 x(n) = b(n)/a(n).

7 For(k = n− 1 : −1 : 1)

8 x(k) = (b(k) + x(k + 1))/a(k)

9 EndFor

Algorithm 2 Recursive procedure to solve T
(d)
n xd = b

1: procedure x(d) ← Recursive(b, d)

2: If(d == 1)

3: return x(1) = T
−(1)
n b (by Algorithm 1.)

4: else

5: Define a(d−1) = ZTT
(d−1)
n e1

6: Compute x(d−1) = Recursive(b, d− 1)

7: Compute c(d−1) = Recursive(a(d−1), d− 1)

8: Define H
(d−1)
n as defined in (2.4)

9: Compute x(d) = H
−(d−1)
n x(d−1)

10: return x(d).

8: end if

9: end procedure
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Stable Gaussian elimination algorithm for ill-conditioned banded toeplitz

Table 1: Comparison the results of GBD and GLev Algorithm for T
(2)
n and T

(4)
n

Results for T
(2)
n Results for T

(4)
n

n GBD Glev GBD Glev
∥rn∥ CPU ∥rn∥ CPU ∥rn∥ CPU ∥rn∥ CPU

29 1.32× 10−12 0.0013 4.68× 10−12 0.0101 2.86× 10−10 0.0053 9.42× 10−10 0.0112
210 1.59× 10−11 0.0018 2.02× 10−11 0.0221 7.34× 10−9 0.0038 6.23× 10−9 0.0342
211 6.56× 10−11 0.0054 7.80× 10−11 0.0494 5.96× 10−8 0.0066 6.85× 10−8 0.0513
212 2.48× 10−10 0.0152 3.14× 10−10 0.1452 4.96× 10−7 0.0161 4.68× 10−4 0.1501
213 1.02× 10−9 0.0325 1.25× 10−9 0.7443 4.02× 10−6 0.0710 5.17× 10−4 0.7321
214 4.04× 10−9 0.1253 5.11× 10−9 2.8594 3.20× 10−5 0.2238 6.21× 10−4 3.001
215 1.60× 10−8 0.4203 1.70× 10−8 11.3476 2.57× 10−4 0.7596 0.0084 11.4521
216 6.3628× 10−8 1.3627 4.2896× 10−8 53.8154 0.0021 2.8229 0.0338 54.9231

3. Numerical Experiments

In this section, we perform some numerical examples to show the efficiency of the proposed method.
All tests were carried out in double precision with a Matlab code. In this section, we compare our
method GBD (Gaussian elimination for banded Toeplitz matrices) with GLev (general Levinson
algorithm) [2].
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Perturbed Simpson-type inequality via h−convex functions

Ali Barani, Naser Abbasi

Abstract. In this paper the celebrate Simpson-type inequality for functions whose n−th deriva-
tives in absolute value are h−convex is introduced.

1. Introduction

One of the most important results in numerical analysis for approximate integrals is Simpson’s
inequality as follows∣∣∣∣∫ b

a
f(x)dx− b− a

6

[
f(a) + 4f

(a+ b

2
) + f(b)

]∣∣∣∣ ≤ 1

2880
||f (4)||∞(b− a)5, (1.1)

where the the function f : [a, b] → R is supposed to be four times continuously differentiable on
(a, b) and

||f (4)||∞ := sup
x∈(a,b)

|f (4)(x)| < ∞,

see [7]. Then several generalization of (1.1) appeared in the literature by imposing the convexity and
generalized convexity conditions on |f (n)| for n = 1, 2, 3, ... (see for example [1, 3]). The perturbed
Simpson’s formula investigated by Liu in [4] as follows.

Theorem 1.1. Let f : [a, b] → R be n−times continuously differentiable on (a, b). Then

(−1)n
∫ b

a
Sn(x)f

(n)(x)dx =

∫ b

a
f(x)dx− b− a

6

[
f(a) + 4f

(a+ b

2
) + f(b)

]
+

[n−1
2

]∑
i=1

(i− 1)(b− a)2i+1

3(2i+ 1)!22i−1
f (2i)(

a+ b

2
),

(1.2)

where [n−1
2 ] is the integer part of n−1

2 and

Sn(x) :=

{
(x−a)n

n! − (b−a)(x−a)n−1

6(n−1)! , x ∈ [a, a+b
2 ],

(x−b)n

n! − (b−a)(x−b)n−1

6(n−1)! , x ∈ (a+b
2 , b].

Then several applications and improvements appeared in literature in [5, 6, 9] and references
therein. Note that for n = 1, 2, 3, 4 there are no perturbation terms so the perturbed Simpson’s
inequality is obtained from Theorem 1.1 as follows.

Keywords: Simpson-type inequality, h−convex function, s−convex function.
AMS Mathematical Subject Classification [2010]: 26D15, 26A51.
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Simpson-type inequality

Theorem 1.2. Let f : [a, b] → R be n−times continuously differentiable on (a, b) such that n > 4
and ||f (n)||∞ := supx∈(a,b) |f (n)(x)| < ∞. Then∣∣∣∣∫ b

a
f(x)dx− b− a

6

[
f(a) + 4f

(a+ b

2
) + f(b)

]
+

[n−1
2

]∑
i=1

(i− 1)(b− a)2i+1

3(2i+ 1)!22i−1
f (2i)(

a+ b

2
)

∣∣∣∣∣∣ ≤ ||f (n)||∞
(n− 2)(b− a)n+1

3(n+ 1)!2n
.

(1.3)

On the other hand the class of h-convex functions was introduced by S. Varosanec in [2] which
contains the some important subclasses for example convex, quasi convex, P−convex and s−convex
functions.

Definition 1.3. The function f : I ⊂ R → R is said to be h−convex for a function h : J → (0,+∞)
with (0, 1) ⊆ J, if for every x, y ∈ I and t ∈ (0, 1) one has

f((1− t)x+ ty) ≤ h(1− t)f(x) + h(t)f(y).

Then several authors investigated more generalizations and applications on this notion, see for
example [8]. Motivated by above results in this paper we obtain several Simpson-type inequalities
for functions whose n−th derivatives in absolute value are h−convex.

2. Main results

To proceed we set

σ(a, b) := f(a) + 4f
(a+ b

2
) + f(b) +

[n−1
2

]∑
i=1

(i− 1)(b− a)2i+1

3(2i+ 1)!22i−1
f (2i)(

a+ b

2
).

The following lemma is a consequence of Theorem 1.1.

Lemma 2.1. Let f : [a, b] → R be n−times continuously differentiable on (a, b). Then

(−1)n
∫ 1

0
γn(t)f

(n)((1− t)a+ tb)dt =

∫ b

a
f(x)dx− σ(a, b), (2.1)

where

γn(t) :=

{
(b−a)n+1

n!

(
tn − ntn−1

6

)
, t ∈ [0, 12 ],

(−1)n(b−a)n+1

n!

(
(1− t)n − n(1−t)n−1

6

)
, t ∈ (12 , 1].

Now, we obtain a version of Simpson’s type inequality for h−convex functions.

Theorem 2.2. Let f : [a, b] → R be n−times continuously differentiable on (a, b) such that n > 4.
Suppose that f (n) ∈ L[a, b] and |f (n)| is a h−convex function on [a, b]. Then∣∣∣∣∫ b

a
f(x)dx− σ(a, b)

∣∣∣∣
≤ (b− a)n+1

n!

[∫ 1
2

0
(
n

2
tn−1 − tn) (h(1− t) + h(t)) dt

] (
|f (n)(a)|+ |f (n)(b)|

)
.

(2.2)
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A. Barani, N. Abbasi

In Theorem 2.2, if h(t) = t, for every t ∈ [0, 1] then we get a version of Simpson’s type inequality
related to convex functions.

Theorem 2.3. Let f : [a, b] → R be n−times continuously differentiable on (a, b) such that n > 4.
Suppose that f (n) ∈ L[a, b] and |f (n)| is a convex function on [a, b]. Then∣∣∣∣∫ b

a
f(x)dx− σ(a, b)

∣∣∣∣ ≤
[
(n− 2)(|f (n)(a)|+ |f (n)(b)|)

]
3(n+ 1)!2n+1

(b− a)n+1. (2.3)

For quasi convex case we derive the next theorem from Theorem 2.2, which investigate in [5, p.
49].

Theorem 2.4. Let f : [a, b] → R be n−times continuously differentiable on (a, b) such that n > 4.
Suppose that f (n) ∈ L[a, b] and |f (n)| is a quasiconvex function on [a, b]. Then∣∣∣∣∫ b

a
f(x)dx− σ(a, b)

∣∣∣∣ ≤ (n− 2)max
{
|f (n)(a)|, |f (n)(b)|

}
3(n+ 1)!2n

(b− a)n+1. (2.4)

Pick h(t) = ts, for every t ∈ [0, 1] and some s ∈ (0, 1) in Theorem 2.2 then we deduce the next
result.

Theorem 2.5. Let f : [a, b] → [0,+∞) be n−times continuously differentiable on (a, b) such that
n > 4. Suppose that f (n) ∈ L[a, b] and |f (n)| is a s−convex function on [a, b], for some f ∈ (0, 1).
Then we have∣∣∣∣∫ b

a
f(x)dx− σ(a, b)

∣∣∣∣
≤

[
I(n, s) +

n2 + ns− s

(n+ s)(n+ s+ 1)2n+s+1

](|f (n)(a)|+ |f (n)(b)|
)
(b− a)n+1

n!
,

(2.5)

where I(n, s) :=
∫ 1

2
0 (n2 t

n−1 − tn))(1− t)sdt.
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The irreducible representation of general linear methods

Rana Akbari, Gholamreza Hojjati, Ali Abdi

Abstract. In this paper, we discuss equivalence and reducibility consents of the general linear
methods (GLMs) for ordinary differential equations which are useful in studding the stability prop-
erties of the methods. Also, we give a representation of linear multistep methods as irreducible
GLMs. Some examples of reducible methods and their equivalents along with some irreducible
GLMs are examined.

1. Introduction

A general linear method (GLM) of order p and stage order q for the numerical solution of the
autonomous initial value problem (IVP)

y′(x) = f(y(x)), x ∈ [x0, x̄],
y(x0) = y0,

(1.1)

utilizes r input and output values, and s stage values. The vectors y[n−1] = [y
[n−1]
i ]ri=1 and y[n] =

[y
[n]
i ]ri=1 are respectively collection of the quantities imported at the beginning of step number n

and the quantities exported at the end of this step. Also, Y [n] = [Y
[n]
i ]si=1 is an approximation of

stage order q to the vector y(xn−1 + ch) = [y(xn−1 + cih)]
s
i=1. A GLM used to solve (1.1) takes the

form [1]
Y [n] = h(A⊗ Im)f(Y [n]) + (U ⊗ Im)y[n−1],

y[n] = h(B ⊗ Im)f(Y [n]) + (V ⊗ Im)y[n−1].
(1.2)

where A , U , B and V are the coefficients matrices of the method. This formulation might be
reducible. Hence, Butcher and Hill discovered [2] a compact representation of linear multistep
methods (LMMs) with r = k inputs and s = 1 stage. The main focus of this paper is on the
irreducible representation of GLMs. We define equivalence and reducibility concepts of GLMs.
ALso, an irreducible GLM representation is presented for linear multistep methods. Our last step
will be to look at examples of GLMs and examine their irreducibility.

2. Reducibility of GLMs

It is possible for two numerical methods to have somewhat different appearances, but when applied
to an IVP, they ultimately give the same answer. It allows us to define the equivalence between the
two GLMs.

Keywords: General linear methods, Linear multistep methods, Equivalence, Reducibility.
AMS Mathematical Subject Classification [2010]: 65L05.
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The irreducible representation of general linear methods

Definition 2.1. Two GLMs are equivalent if they yield the same numerical solution for all initial
value problems, for a small enough stepsize h.

Identifying whether two GLMs are equivalent requires discussion of the concept of reducibility.
If a GLM can be partitioned in such a way that s = s1+s2 and r = r1+r2+r3 with s2+r2+r3 > 0,
so that it has the following sparsity pattern

A11 0 U11 0 U13

A21 A22 U21 U22 0

B11 0 V11 0 V13

B21 B22 V21 V22 V23

0 0 0 0 V33

 , (2.1)

then we say that the method is reducible; otherwise the method is said to be irreducible [3, 4].

3. The LMM as an irreducible GLM

The k-step LMMs with the stepsize h > 0 may be written as

yn =
k∑

j=1

αjyn−j + h
k∑

j=0

βjf(yn−j). (3.1)

These methods can be expressed as GLMs with s = 1, r = 2k and the coefficients matrices

[
A U
B V

]
=



β0 α1 · · · αk−1 αk β1 · · · βk−1 βk

β0 α1 · · · αk−1 αk β1 · · · βk−1 βk

0 1 · · · 0 0 0 · · · 0 0
...

... . . . ...
...

... . . . ...
...

0 0 · · · 1 0 0
... 0 0

1 0 · · · 0 0 0
... 0 0

0 0 · · · 0 0 1
... 0 0

...
... . . . ...

...
... . . . ...

...

0 0 · · · 0 0 0
... 1 0



. (3.2)

Taking s1 = 1, s2 = 0 and r1 = k , r2 = 0, r3 = k as an assumption, this representation is reducible.
Special cases of LMMs may be represented in a more compact way. Butcher and Hill [2] discovered
a compact representation of LMMs with r = k inputs and s = 1 stage. Defining y[n−1] with only k
inputs as

y
[n−1]
i =

k∑
j=k−i+1

(αjyn+k−i−j + hβjf(yn+k−i−j)), (3.3)

the LMMs can be written in the form

yn = hβ0f(yn) +
∑k

j=1(αjyn−j + hβjf(yn−j)) = hβ0f(yn) + y
[n−1]
k ,

y
[n]
i =

∑k
j=k−i+1(αjyn+1+k−i−j + hβjf(yn+1+k−i−j)) = αk−i+1yn + hβk−i+1f(yn)

+
∑k

j=k−i+2(αjyn+1+k−i−j + hβjf(yn+1+k−i−j)) = αk−i+1β0 + βk−i+1hf(yn) + αk−i+1y
[n−1]
k + y

[n−1]
i−1 .
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R. Akbari, G. Hojjati, A. Abdi

Hence, we have representation

[
A U
B V

]
=



β0 0 0 0 · · · 0 1
αkβ0 + βk 0 0 0 · · · 0 αk

αk−1β0 + βk−1 1 0 0 · · · 0 αk−1

...
... . . . . . . . . . ...

...

α2β0 + β2 0 0 0
. . . 0 α2

α1β0 + β1 0 0 0 · · · 1 α1


. (3.4)

4. Examples

Example 4.1. The GLM form of the modified extended backward differentiation formulas (MEBDFs)
[5] can be written with the coefficients matrices

A =

 β̂k 0 0

−α̂k−1β̂k β̂k 0

βk − β̂k−1 βk+1 β̂k

 ,

U =

 −α̂k−1 −α̂k−2 · · · −α̂1 −α̂0

α̂k−1α̂k−1 − α̂k−2 α̂k−1α̂k−2 − α̂k−3 · · · α̂k−1α̂1 − α̂0 α̂k−1α̂0

−α̂k−1 −α̂k−2 · · · −α̂1 −α̂0

 ,

B =


βk − β̂k−1 βk+1 β̂k

0 0 0
...

...
...

0 0 0
0 0 0

 , V =


−α̂k−1 −α̂k−2 · · · −α̂1 −α̂0

1 0 · · · 0 0
... . . . . . . ...

...
0 0 0 0 0
0 0 · · · 1 0

 .

Since this method cannot be interpreted with the sparsity pattern (2.1), s2 = r2 = r3 = 0, so it is
irreducible.

Example 4.2. The 2-step LMM given by

[
A U

B V

]
=

 1 1 0

1 1 0
1 0 0

 ,

is reducible with the assumption of r2 = 1 and s2 = r3 = 0, and it corresponds to backward Euler
method [

1 1

1 1

]
.
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A modification of Grünwald-Letnikov derivative in image
processing

Hoda Jalalinejad, Ali Tavakoli

Abstract. In order to better show the rate of changes of the derivative in image processing, we
need to redefine the Grünwald-Letnikov derivative. In this paper, we highlight the problems of
Grünwald-Letnikov derivative in image processing and based on, we present a new definition of
Grünwald-Letnikov derivative to improve these problems.

1. Introduction

The fractional differential equation had been studied over the last 300 years. Recently, the fractional
differential equation has used for image and signal processing. In 2003, Mathieu et al. applied the
fractional differentiation for edge detection [5]. Gao et al. in [2] applied an improved fractional
differential operator based on a piecewise quaternion for image enhancement. Furthermore, in [4],
the generalized fractional image denoising algorithm based on Srivastava-owa fractional differential
operator is introduced for image denoising. The Grünwald-Letnikov derivative is used for image
enhancement in [6]. In [1] Gao et al. by development of the real fractional differential and its
applications in the signal processing, extended the quaternion fractional differential (QFD), based
on Grünwald-Letnikov and apply it to edge detection of colour image. In this paper, we investigate
some problems of Grünwald-Letnikov derivative in image processing and then, improve them with
a new definition.

2. Preliminaries

In this section, we introduce the Grünwald-Letnikov derivative and discuss why we want to modify
this definition.

Definition 2.1. The Grünwald-Letnikov derivative for one variable function f is defined as follows:

Dα
G−Lf(x) = lim

h→0

1
hα

[ t−a
n

]∑
r=0

(−1)r
(
α
r

)
f(x− rh),

where (
α

r

)
=

Γ(α+ 1)

Γ(r + 1)Γ(α− r + 1)
,

and Γ is the Gamma function and a is a real constant.
Keywords: Grünwald-Letnikov derivative, image processinge, edge detection..
AMS Mathematical Subject Classification [2010]: 97M10, 1072.
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A modification of Grünwald-Letnikov derivative in image processing

In image processing, the value of f(x, y) is called the color intensity of image at point (x, y) where
x and y are spatial coordinates. Therefore, the Grünwald-Letnikov derivative in two dimension in
x-direction can be defined as follow [3,6]:

Dα
G−Lfx(x, y) = [f(x, y)− αf(x− 1, y) + α(α−1)f(x−2,y)

2 ]. (2.1)

Similarly, the Grünwald-Letnikov derivative is defined in y-direction. Hence, the Grünwald-Letnikov
fractional derivative is defined by:

Dα
G−Lf(x, y) =

√
(Dα

G−Lfx(x, y))
2 + (Dα

G−Lfy(x, y))
2. (2.2)

To summarize, we present two examples to show that it is better to modify the definition of
Grünwald-Letnikov derivative.

Example 2.2. Let f(x− 1, y) = f(x− 2, y) = f(x, y) = 250. By (2.1) we get

Dα
G−Lfx(x, y) = 250− α250 +

α(α− 1)

2
250 = (1− α)(2− α)125,

that implies
0 < Dα

G−Lfx(x, y) < 250.

In the special case α = 1/2, we have Dα
G−Lfx(x, y) = 93.75.

Example 2.3. Let f(x− 2, y) = f(x− 1, y) = f(x, y) = 1. We have

Dα
G−Lfx(x, y) = 1− 1α+ α(α−1)

2 = (1− α)(2− α)/2.

Again, for 0 < α ≤ 1, we have
0 ≤ Dα

G−Lfx(x, y) < 1.

In this examples, since the value of f is constant in x-direction, we have expect no change or a
few change in the derivative of f in x-direction. However, we see the value of Dα

G−Lf(x, y) severely
depends on the intensity of f compared to the difference of f and their x-neighbourhoods.

Therefore, in order to better represent the rate of changes of the derivative, we modify the
definition of Grünwald-Letnikov derivative.

3. Main result

In this section, we express a modified definition of Grünwald-Letnikov derivative. By considering

X(x, y) = |f(x, y)− αf(x− 1, y) +
α(α− 1)

2
f(x− 2, y)|,

and

M(x, y) =
1

sn
min{f(x, y), f(x− 1, y), f(x− 2, y)},

where s ≥ 255 is an integer number and 0 ≤ n ≤ 1 is a real number, the equation of the line passing
through of two points (0,M(x, y)) and (s, 0) is

Y (x, y) = M(x, y)

(
s−X(x, y)

s

)
.
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Now, we define the modified Grünwald-Letnikov derivative in x-direction as follow:

mDα
G−Lfx(x, y) =

f(x, y)− αf(x− 1, y) +
α(α− 1)

2
f(x− 2, y)

Y (x, y) + 1
,

(3.1)

that the value 1 is added to Y (x, y) to avoid of vanishing the denominator. By (3.1), we get

mDα
G−Lfx(x, y) =

sn+1A

θ(s− |A|) + sn+1
,

where θ = min{f(x, y), f(x− 1, y), f(x− 2, y)} and A = Dα
G−Lfx(x, y).

By definition the modified Grünwald-Letnikov derivative in y-direction, the modified Grünwald-
Letnikov fractional derivative can be defined by

mDα
G−Lf(x, y) =

√
(mDα

G−Lfx(x, y))
2 + (mDα

G−Lfy(x, y))
2. (3.2)

Now, we compute the modifed Grünwald-Letnikov derivative for the preceding examples.

For Examples Example 2.2, we have

0 ≤ mDα
G−Lfx(x, y) <

250sn+1

250(s− 250) + sn+1
,

in which 0 < α ≤ 1. The special case α = 1/2, s = 255 and n = 1 yields mDα
G−Lfx(x, y) = 57.8725.

For Example 2.3,

0 ≤ mDα
G−Lfx(x, y) <

sn+1

(s− 1) + sn+1
< 1,

in which 0 < α ≤ 1.

4. Numerical results

In this section, we show that the modified Grünwald-Letnikov fractional derivative can be efficiently
applied for edge detection.

Example 4.1. (Edge detection) Consider Figure 1(a) as an original image. Figure 1(b) shows
its Grünwald-Letnikov derivative defined by (2.2) and Figure 1(c) shows its modified Grünwald-
Letnikov derivative defined by (3.2). In both Figures 1(b,c), we put α = 0.5. Also, for modified
Grünwald-Letnikov derivative, s = 255 and n = 0.5 selected. As it is seen the modified Grünwald-
Letnikov derivative shows only the edges of the main figure while Grünwald-Letnikov derivative
shows the whole of figure with low intensity.
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A modification of Grünwald-Letnikov derivative in image processing

(a)
(b)

(c)

Figure 1: An original image (a), its Grünwald-Letnikov derivative (b) and its modified Grünwald-
Letnikov derivative (c), corresponding to Example 4.1.
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A spectral collocation method for solving the nonlinear
weakly singular FIPDE

MehranTaghipour, Hossein Aminikhah

Abstract. This work focuses on finding the numerical solution of the nonlinear time–fractional
partial integro–differential equation (FIPDE). For this purpose, we use the operational matrices
based on Pell polynomials to approximate fractional Caputo derivative, nonlinear, and integro–
differential terms, and by collocation points, we transform the problem to a system of nonlinear
equations. This nonlinear system can be solved by the fsolve command in Matlab.

1. Introduction

In the present work, we propose a numerical scheme to solve the nonlinear time–fractional partial
integro–differential equation with a weakly singular kernel

C
0 Dα

t u(x, t) + u(x, t)ux(x, t) =

∫ t

0
(t− s)β−1uxx(x, s)ds+ g(x, t), x ∈ [0, L], t ∈ [0, T ], (1.1)

with initial and boundary conditions

u(0, t) = ϕ1(t), u(L, t) = ϕ2(t), 0 < t ≤ T, (1.2)
u(x, 0) = ψ(x), 0 < x ≤ L, (1.3)

where 0 < α, β < 1, g(x, t) ∈ C([0, L] × [0, T ]), and CDα
0 is the Caputo fractional derivative

with respect to t. This problem appears in the modeling of heat transfer materials with memory,
population dynamics and nuclear reaction theory.

To the best of the author’s knowledge, little work has been done on problem (1.1). For example,
Guo et al. [1] proposed a finite difference scheme for solving the problem (1.1)–(1.3). In the case of
α = 1, Zheng et al. [2] described three semi–implicit compact finite difference schemes for problem
(1.1)–(1.3). This stimulates us to propose a numerical method for solving the problem (1.1)–(1.3).

2. Numerical method

We first provide some definitions.

Definition 2.1. The Caputo derivatives of order 0 < α < 1 of a suitably smooth function u(x, t)
on (0, b)× (0, T ) is defined by

C
0 Dα

t u(x, t) =
1

Γ(1− α)

∫ t

0
(t− τ)−αu′(x, τ)dτ. (2.1)

Keywords: Pell polynomials, Spectral collocation method, Caputo fractional derivative.
AMS Mathematical Subject Classification [2010]: 65M70, 65R10, 34K37.
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A spectral collocation method for solving FIPDE

Pell polynomials can be generated by the following recurrence relation:

Pn+2(x) = 2xPn+1(x) + Pn(x), P0(x) = 0, P1(x) = 1. (2.2)

Using Pell polynomials, we can approximate a continuous function u(x) as follows:

u(x) ≈ uN (x) =
N∑
i=0

ci+1Pi+1(x) = CTPN (x), (2.3)

where
C = [c1, c2, . . . , cN+1]

T , PN (x) = [P1(x), P2(x), . . . , PN+1(x)]
T . (2.4)

Analogously, we can express a continuous function u(x, t) on [0, L]× [0, T ] as follows:

u(x, t) ≈ uNM (x) =

N∑
i=0

M∑
j=0

ci+1,j+1Pi+1(x)Pj+1(t) = PN (x)TWPM (t) = CTPNM (x, t), (2.5)

where W is a (N + 1)× (M + 1) matrix, C and PNM (x, t) are (N + 1)(M + 1)× 1 vectors

C = [c11, c12, . . . , c1M+1, c21, . . . , c2M+1, . . . , cN1, . . . , cN+1M+1]
T ,

PNM (x, t) = [P11(x, t), . . . , P1M+1(x, t), . . . , PN+11(x, t), . . . , PN+1M+1(x, t)]
T ,

and Pij(x, t) = Pi(x)Pj(t) are two variable Pell polynomials.
Also we can rewrite PN (x),PM (t) in an equivalent forms as

PN (x) = QxT (x) (2.6)
PM (t) = QtT (t), (2.7)

where
T (x) = [1, x, x2, . . . , xN ]T , T (t) = [1, t, t2, . . . , tM ]T (2.8)

and matrices Qx and Qt are (N + 1)× (n+ 1),(M + 1)× (n+ 1) have the formulas:

Qx =


q0,0 0 0 0 · · · 0
0 q1,1 0 0 · · · 0
q2,0 0 q2,2 0 · · · 0

...
...

...
...

...
...

qn,1 0 qn,3 · · · 0 qN,N

 , Qt =


q0,0 0 0 0 · · · 0
0 q1,1 0 0 · · · 0
q2,0 0 q2,2 0 · · · 0

...
...

...
...

...
...

qn,1 0 qn,3 · · · 0 qM,M


with

(qi,j) =


(i−⌊ i−j

2
⌋

⌊ i−j
2

⌋

)
2i−2⌊ i−j

2
⌋, if i ≥ j, i, j = odd or i, j = even

0, otherwise.

We approximate the Caputo fractional derivative as follows:
C
0 Dα

t u(x, t) ≈ C
0 Dα

t uNM (x, t) = C
0 Dα

t PN (x)TWPM (t) = PN (x)TW
(
C
0 Dα

t PM (t)
)
,

= PN (x)TWQt

(
C
0 Dα

t T (t)
)

= PN (x)TWQt

[
0,

Γ(2)

Γ(2− α)
t1−α,

Γ(3)

Γ(3− α)
t2−α, . . . ,

Γ(M + 1)

Γ(M + 1− α)
tM−α

]T
,

= PN (x)TWQtMαQ
−1
t PM (t). (2.9)
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Next, we approximate the nonlinear and integro–differential terms in equation (1.1).

u(x, t)ux(x, t) ≈ uNM (x, t)uMNx(x, t) = PN (x)TWPM (t)PN (x)TQ−T
x D′TQT

xWPM (t). (2.10)

For integro–differential term, we have∫ t

0
(t− s)β−1uxx(x, s)ds ≈

∫ t

0
(t− s)β−1P ′′

N (x)TWPM (s)ds (2.11)

=

∫ t

0
(t− s)β−1(QxD

′′Q−1
x PN (x))TWPM (s)ds

= PN (x)TQ−T
x D′′TQT

xW

∫ t

0
(t− s)β−1QtT (s)ds

= PN (x)TQ−T
x D′′TQT

xWQt

∫ t

0

[1, s, . . . , sM ]T

(t− s)1−β
ds. (2.12)

On the other hand, the following relationship is valid:∫ t

0

xk

(t− x)1−β
dx =

Γ(k + 1)Γ(β)

Γ(k + β + 1)
tk+β , 0 < β < 1, k = 0, 1, 2, . . . . (2.13)

So, by substituting (2.13) into (2.12), we have∫ t

0

(t− s)β−1uxx(x, t)ds ≈= PN (x)TQ−T
x D′′TQT

xWQtST
β(t), (2.14)

where

S = diag
(

Γ(β)

Γ(β + 1)
,
Γ(2)Γ(β)

Γ(β + 2)
, . . . ,

Γ(M + 1)Γ(1− β)

Γ(β +M + 1)

)
,

and
T β(t) =

[
tβ , tβ+1, . . . , tβ+M

]
.

Hence, using relations (2.9),(2.10), and (2.14), we obtain the following equations:

R1(x, t) = PN (x)TWQtMαQ
−1
t PM (t) + PN (x)TWPM (t)PN (x)TQ−T

x D′TQT
xWPM (t)

+PN (x)TQ−T
x D′′TQT

xWQtST
β(t) ≈ 0

R2(x) = PN (x)TWPM (0)− ψ(x) ≈ 0

R3(t) = PN (0)TWPM (t)− ϕ1(t) ≈ 0

R4(t) = PN (L)TWPM (t)− ϕ2(t) ≈ 0

(2.15)

Now, we collocate equations (2.15) with the points xi = (2i+1)
2N+2 and tj =

(2j+1)
2M+2 to obtain

R1(xi, tj) ≈ 0 i = 0, 1, . . . , N − 2, j = 0, 1, . . .M − 1,

R2(xi) ≈ 0 i = 0, 1, . . . , N,

R3(tj) ≈ 0 j = 0, 1, . . . ,M − 1,

R4(tj) ≈ 0 j = 0, 1, . . . ,M − 1.

(2.16)

In view of (2.16), we have a nonlinear system of equations. By solving this system, the unknown
matrix W can be determined. The numerical solution of the equations (1.1)–(1.3) can be obtained
by substituting the matrix W into the approximation (2.5).
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3. Numerical experiment

In this section, we use the L∞ error norm and L2 error norm

||e||∞ = max
0≤i≤N,0≤j≤M

|u(xi, tj)− uNM (xi, tj)|, ∥e∥2 =
(
h

n∑
j=0

(emj )2
) 1

2

,

where u and uNM are the exact and approximate solutions of (1.1)–(1.3), respectively.
Example 3.1. Consider the equations (1.1)-(1.3) with the exact solution u(x, t) = t3 sin(πx). The
source term is

g(x, t) =

(
6t3−α

Γ(4− α)
+

6π2Γ(β)t3+β

Γ(4 + β)
πt6 cos(πx)

)
sin(πx).

Absolute errors for α = 0.5 and different values of β are reported in Table 1. Furthermore, the
norm of errors and CPU times are reported in Table 2.

Table 1: Absolute errors for α = 0.5 and different β for Example 3.1
(xi, ti) α = 0.5, N = 11 α = 0.5, N = 11 α = 0.5, N = 9 α = 0.5, N = 9

β = 0.1,M = 4 β = 0.3,M = 4 β = 0.7,M = 4 β = 0.9,M = 4

(0.1, 0.1) 5.2665e− 11 7.5026e− 11 9.4157e− 10 1.5935e− 09
(0.2, 0.2) 8.8713e− 10 7.0142e− 10 1.7084e− 09 4.5505e− 09
(0.3, 0.3) 4.6062e− 09 3.6713e− 09 5.8173e− 08 1.3764e− 09
(0.4, 0.4) 1.4766e− 08 1.2353e− 08 3.6620e− 07 1.2902e− 07
(0.5, 0.5) 3.6426e− 08 3.1853e− 08 1.2736e− 06 6.7104e− 07
(0.6, 0.6) 7.6243e− 08 6.9345e− 08 3.4065e− 06 2.2596e− 06
(0.7, 0.7) 1.4258e− 07 1.3432e− 07 7.7630e− 06 6.0393e− 06
(0.8, 0.8) 2.4555e− 07 2.3833e− 07 1.5689e− 05 1.3673e− 05
(0.9, 0.9) 3.8165e− 07 3.7801e− 07 2.5814e− 05 2.4145e− 05
(1, 1) 7.3344e− 15 1.1944e− 16 1.6793e− 15 2.1690e− 14

Table 2: Norm of errors for α = β = 0.5 and CPU time for Example 3.1
M = 4, N = 6 M = 4, N = 7 M = 4, N = 8 M = 4, N = 9 M = 4, N = 10

||e||∞ ||e||∞ ||e||∞ ||e||∞ |||e||∞
1.7427e− 03 1.7093e− 03 3.7497e− 05 3.7046e− 05 5.5452e− 07

CPU 0.7787s 1.3037s 1.4066s 1.5607s 1.9541s
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Numerical solution of non-linear reaction-diffusion
equations using meshless radial point Hermite interpolation

method

Masoud Pendar, Kamal Shanazari

Abstract. In this work, we present a numerical method to solve two-dimensional non-linear
reaction-diffusion equations. Meshless and collocation techniques using radial basis functions (RBFs)
with the help of radial point Hermite interpolation (RPHI) method are employed to construct the
so called shape functions. Due to the use of meshless method, no mesh generation is required in
the spatial domain. Time discretization is performed using the finite difference method and Taylor
expansion is utilized for the non-linear part. The accuracy and efficiency of the method are exam-
ined by a numerical example. The numerical results show that this procedure is stable through the
time.

1. Introduction

The mesh-based methods such as finite element method, finite difference method and boundary
element method are still important tools in solving engineering problems and numerical analysis.
However, in the recent decades, meshless methods such as collocation method based on radial basis
functions (RBFs) have become alternatives for the numerical solutions of partial differential equa-
tions (PDEs) [2]. Hermite radial point interpolation method is a combination of point interpolation
and Hermite interpolation technique based on RBFs. In this method, in addition to the unknown
function, its derivative at the field nodes are considered as independent variables to construct the
shape functions. This provides a suitable tool for imposing the Neumann and Robin boundary
conditions which results in accurate numerical solutions. For more details see for example [3, 4]
and references therein. Besides the steady state equations, the radial point Hermite interpolation
method has been applied to time-dependent linear problems [3–5]. Many physical and engineer-
ing phenomena are modeled by time-dependent non-linear equations. In this work, we apply the
proposed method to the non-linear reaction-diffusion equations which is introduced in subsection
2.2.

2. Main Results

2.1. Meshless RPHI metod

In this section, we briefly introduce some important features and notations of meshless RPHI
method. For more details we refer to [5]. Suppose that u(x) is defined in a domain Ω, repre-
sented by a set of field nodes. In the RPHI method, the approximate function at a point of interest

Keywords: Nonlinear reaction-diffusion equation, Meshless method, Radial basis function, Radial point Hermite
interpolation method.

AMS Mathematical Subject Classification [2010]: 35Q79, 49M30, 65N35.
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non-linear reaction-diffusion equations using RPHI method

x contains the nodal values of u(x) and its derivatives at the field nodes as follows [5]:

u(x) =
n∑

j=1

φj(x)aj +
n∑

j=1

∂φj(x)
∂x

axj +
n∑

j=1

∂φj(x)
∂y

ayj +
m∑
j=1

pj(x)bj

= ΦT (x)a +ΦT
,x(x)ax +ΦT

,y(x)ay + P T (x)b,
(2.1)

where , x and , y represent the partial derivatives with respect to x and y respectively, φj(x) denotes
an RBF, n is the number of basis functions, pj(x) is the augmented monomial which is built
using Pascal’s triangle, m is the number of polynomial basis functions. In this work, we choose
φ(r) = r4 ln(r), namely Thin plate spline (TPS), as the RBF. In order to determine the unknown
coefficients in (2.1), n field points are included in a support domain that is formed for the point of
interest at x. If we use the interpolation conditions for u(x) and its derivatives then, in a matrix
form, we can write

U = Φna +Φx
nax +Φy

nay + Pmb, Ux = Φx
na +Φxx

n ax +Φxy
n ay + P x

mb

Uy = Φy
na +Φyx

n ax +Φyy
n ay + P y

mb.
(2.2)

There are m + 3n unknown coefficients and 3n equations in (2.2). Since TPS is a conditionally
positive definite RBF, we can add m equations as P T

ma + P xT
m ax + P yT

m ay = 0 and combine them
with (2.2) so that we obtain a (m+ 3n)× (m+ 3n) system of equations as

Ũs =


U
Ux

Uy

0

 =


Φn Φx

n Φy
n Pm

Φx
n Φxx

n Φxy
n P x

m

Φy
n Φyx

n Φyy
n P y

m

P T
m P xT

m P yT
m 0




a
ax

ay

b

 = Gãs, (2.3)

where G is a symmetric matrix and also invertible. Solving equations (2.3) we get ãs = G−1Ũs and
inserting it in (2.1), we obtain u(x) = Φ̃T (x)Ũs, where

Φ̃T (x) =
(
ϕ1(x) . . . ϕn(x) ϕx

1(x) . . . ϕx
n(x) ϕy

1(x) . . . ϕy
n(x) ϕp

1(x) . . . ϕp
m(x)

)
. (2.4)

The first 3n functions in (2.4) are called radial point Hermite interpolation shape functions. For
the unknown function u(x) we can write

u(x) =
n∑

j=1

ϕj(x)uj +
n∑

j=1

ϕx
j (x)uxj +

n∑
j=1

ϕy
j (x)u

y
j . (2.5)

Let the total number of nodes covering the domain Ω is N , then we can replace n in (2.5) by
N . So we obtain the operational matrices for calculating the derivative of function u in (2.5) as
U

(s)
x = D

(s)
x U, U

(s)
y = D

(s)
y U . For more details see [5].

2.2. The nonlinear reaction-diffusion equation

We consider the following two-dimensional reaction-diffusion equation:

α(
∂u

∂t
) +∇2u+ βg(u) = f(x, t), x ∈ Ω ⊆ R2, t ∈ (0, T ]. (2.6)

with the Neumann boundary condition ∂u
∂n = h1(x, t), x ∈ ∂Ω, t ∈ (0, T ] and the initial condition

u(x, 0) = h2(x), x ∈ Ω ∪ ∂Ω. where ∇ is the gradient differential operator, α and β are known
constants, g is the non-linear known function, n is the outward normal vector on the boundary, T
denotes the total time, f , h1 and h2 are known functions and the function u is unknown.
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2.3. Time discretization

We apply a Crank-Nicolson scheme on (2.6) as

α(
un+1 − un

δt
) +

1

2
(∇2un+1 +∇2un) +

1

2
β(g(un+1) + g(un)) = fn+1, (2.7)

where δt denotes the time step size and un = u(x, tn) represents u at the time level n. Equation
(2.7) is a non-linear PDE for the unknown function un(x). We need to solve the stationary PDE
(2.7) at time level n+ 1. If we write the Taylor expansion of g(un+1) = g(u(x, tn + δt)) around tn
and insert it in (2.7), then we have

αun+1 +
δt

2
∇2un+1 = δtαun − δt

2
∇2un − δtβg(un)− 1

2
(δt)2βg

′
t(u

n) + fn+1. (2.8)

This removes the non-linear term and, consequently, in a matrix form we can write

A[U ]n+1 = B[U ]n + Cn, (2.9)

where A and B are 3N × 3N matrices and Cn is a vector of size 3N × 1. Using the initial condition
as the value of u at the time level n, we can evaluate the function u at the time level n + 1 by
solving the linear system (2.9). To impose the boundary conditions we apply the method introduced
in [4, 5].

2.4. Numerical example

In this subsection, we examine the performance of the proposed method, by considering a numerical
example. To measure the accuracy, we use the maximum absolute error ∥u∥∞ = max{|ue(xi) −
ua(xi)|, 1 ≤ i ≤ N} .
Example. We consider the following 2-D non-linear reaction-diffusion equation [1]:

∂u

∂t
+∇2u+ cos(u(x, y, t)) = cos(e−2t sin(x) sin(y)), (x, y, t) ∈ [0, π]2 × (0, T ],

with the boundary and initial conditions as ux(0, y, t) = h1, ux(π, y, t) = −h1 and uy(x, 0, t) =
h2, uy(x, π, t) = −h2 where h1(y, t) = e−2t sin(y), h2(x, t) = e−2t sin(x). The exact solution of
the above equation is given by u(x, y, t) = e−2t sin(x) sin(y). The error values at T = 2s for various
lengths of h are presented in Table 1. Also, the order of convergence in space and in time are
presented in the columns denoted by O.C.(h) and O.C.(t) respectively.

Table 1: Error values in approximating u, ux and uy for various h and order of convergence in
space and time.

t = 2s, h ∥U∥∞ O.C.(h) ∥Ux∥∞ ∥Uy∥∞
π
5 5.4e− 3 − 3.8e− 2 3.8e− 2
π
10 2.9e− 3 0.89 3.7e− 3 3.7e− 3
π
20 1.9e− 4 3.93 2.7e− 4 2.7e− 4
π
40 1.5e− 5 3.66 1.9e− 5 1.9e− 5

h = π
20 , t(s) O.C.(t)

0.5 1.6e− 3 − 2.8e− 3 3.8e− 2
1 7.4e− 4 1.1 1.2e− 3 9.5e− 3
2 1.9e− 4 1.96 3.1e− 4 1.9e− 4
4 7.8e− 6 4.69 9.6e− 6 7.4e− 5
8 4.9e− 9 10.63 5.1e− 9 4.8e− 8
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non-linear reaction-diffusion equations using RPHI method

Conclusions

We applied the RPHI method to a non-linear reaction-diffusion equation. Time discretization was
performed by Crank-Nicholson method. For the non-linear part, a Taylor expansion method with
respect to time was used. The results showed that this method is stable and by increasing the
number of nodes the approximation error can be reduced.
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A novel shifted Jacobi operational matrix method: An
application for solving nonlinear multi-term fractional

variable-order differential equations

Hamidreza Khodabandehlo, Elyas Shivanian

Abstract. This paper presents the generalized multi-term fractional variable-order differential
equations. In this artticle, a novel shifted Jacobi operational matrix technique is introdused for
solving a class of these equations via reducing the main problem to an algebric system of equations
that can be solved numerically. The suggested technique is successfully developed for the aforemen-
tioned problem. Comprehensive numerical expriments are presented to demonstrate the efficiency,
generality, accuracy of proposed scheme and the flexibility of this method. Comparing the results
of the current method (NSJOM) with the exact solution, indicating the efficiency and validity of
this method. Note that the procedure is easy to implement and this technique will be considered
as a generalization of many numerical schemes.

1. Introduction

Fractional calculus analysis and applications are an active and rapidly growing area for research in
the last three decades. At present, due to their extensive applications in diverse scientific disciplines,
such as physics, regular changes in thermodynamics, etc., it has become an important tool ( [1] and
its resources). The increasing development of appropriate and efficient method to solve FDEs has
aroused more interest of reserchers in this field. In recent years, many attempts have been made
to solve the FDEs, we reffer the interested reader to [3–5] and etc. In this paper, the our aim is
to generalize the orthogonal polynomials in the base of solution. In fact, we present a new shifted
Jacobi operational matrix for the fractional derivative to solve the nonlinear multi-term variable
order FDEs which as follow:

n∑
j=1

αjD
ηj(t)w(t) = F (t, w(t), Dη1(t)w(t), Dη2(t)w(t), . . . , Dηn(t)w(t)), (1.1)

0 ≤ t ≤ T,w(i)(0) = 0, i = 0, 1, 2, ..., n − 1, n ∈ N, where αj ∈ R(j = 1, 2, ..., n), 0 < T.and
Dηj(t)w(t)(j = 1, 2, ..., n) are the Caputo’s derivative of variable-order fractional.

2. Fundamentals and preliminaries

This arrticle is based on Caputo definition because ,as well as know, only the caputo sense has the
same form as integer-order differential equations in initial conditions.

Keywords: Shifted Jacobi Operational Matrix technique, Multi-term variable-order FDE..
AMS Mathematical Subject Classification [2010]: 13F55, 05E40, 05C65.
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A novel shifted Jacobi operational matrix method

Definition 2.1. The Caputo derivative with fractional variable-order η(t) for w(t) ∈ Cm[0, T ] are
given respectively as [2]:

Dη(t)w(t) =
1

Γ(1− η(t))

∫ t

0+

w′(s)

(t− s)η(t)
ds+

w(0+)− w(0−)

Γ(1− η(t))
t−η(t).

Definition 2.2. Denote P
(α,β)
T,i (t);α > −1, β > −1 as the n−th order Shifted Jacobi polynomial in

t defined on [0, T ], and [2]:

P
(α,β)
T,n (t) =

n∑
k=0

(−1)n−k Γ(α+ n+ 1)Γ(α+ β + k + n+ 1)

Γ(α+ β + n+ 1)Γ(α+ 1 + k)Γ(k + 1)Γ(n− k + 1)T k
tk.

2.1. Function approximation by shifted Jacobi polynomials

The function w(t), square integrable with respect to ω
(α,β)
T (t) in [0, T ], can be expanded as the

following expression [2, 5]:

w(t) =

∞∑
i=0

aiP
(α,β)
T,i (t), ai =

1

h
(α,β)
T,j

∫ T

0
ω
(α,β)
T P

(α,β)
T,i (t)w(t)dt, i = 0, 1, . . . . (2.1)

So, we can estimate the approximate solution by taking (N +1)-terms of the series in Eq. (2.1) and
we will have

w(t) ≃ wN (t) =

N∑
i=0

aiP
(α,β)
T,i (t) = ATΦT,N (t), (2.2)

where A = [a0, a1, . . . , aN ]T , and ΦT,N (t) = [P
(α,β)
T,0 (t), P

(α,β)
T,1 (t), . . . , P

(α,β)
T,N (t)]T . Here, we suppose

that S(t) = [1, t, t2, t3, . . . , tN ]T . By equation (2.2), the vector ΦT,N (t) can be presented as ΦT,N (t) =
B(α,β)S(t), where B(α,β) is a square matrix of order (N + 1)× (N + 1). Hence, we get

S(t) = B−1
(α,β)ΦT,N (t). (2.3)

3. Shifted Jacobi Polynomials Operational Matrix (SJOM)

At first, Dηi(t)ΦT,N (t), (i = 1, 2, . . . , n) can be deduced as the following: since ΦT,N (t) = B(α,β)S(t),
then we have

Dηi(t)ΦT,N (t) = Dηi(t)(B(α,β)S(t)) = B(α,β)D
ηi(t)[1, t, . . . , tN ]T , i = 1, 2, . . . , n. (3.1)

Then

Dηi(t)ΦT,N (t) = B(α,β)D
ηi(t)(S(t)) = B(α,β)[0,

Γ(2)t(1−ηi(t))

Γ(2− ηi(t))
, . . . ,

Γ(N + 1)t(N−ηi(t))

Γ(N + 1− ηi(t))
]T

= B(α,β)



0 0 0 · · · 0

0
Γ(2)t−ηi(t)

Γ(2− ηi(t))
0 · · · 0

0 0
Γ(3)t−ηi(t)

Γ(3− ηi(t))
· · · 0

...
...

...
...

...

0 0 0 · · · Γ(N)t−ηi(t)

Γ(N + 1− ηi(t))




1
t
t2

...
tN


= B(α,β)Qi(t)S(t), i = 1, 2, . . . , n.

(3.2)
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Table 1: Absolute errors of w(t) with N = 3 and T = 1 for Ex.1 by NSJOM .
t ∈ [0, T ] α = 1, β = 1 α = 0, β = 0 α = 0.5, β = 0.5

0 8.4655× 10−16 6.9389× 10−17 1.8041× 10−16

0.2 1.0339× 10−15 6.9389× 10−18 2.0122× 10−16

0.4 1.0963× 10−15 8.3267× 10−17 1.9428× 10−16

0.6 1.0825× 10−15 1.3878× 10−16 1.9428× 10−16

0.8 9.7144× 10−16 1.6653× 10−16 1.1102× 10−16

1.0 9.0206× 10−16 1.1102× 10−16 1.5265× 10−16

CPU time 0.3432s 0.2028s 0.3276s

Using Eq.(2.3), then Dηi(t)ΦT,N (t) = B(α,β)Qi(t)B
−1
(α,β)ΦT,N (t), i = 1, 2, . . . , n. The operational

matrix of Dηi(t)ΦT,N (t), (i = 1, 2, . . . , n.) is B(α,β)Qi(t)B
−1
(α,β). Now, we can estimate the multi-

order fractional of the approximated function that obtained in Eq. (2.2). Finally, we use tj(j =

0, 1, 2, . . . ,m.) wher they are the roots of P
(α,β)
T,m+1(t). Then Eq. (1.1) can be converted into the

following algebraic system
n∑

i=1

αi(A
TB(α,β)Qi(tj)B

−1
(α,β)ΦT,N (tj)) =

F (tj , A
TΦT,N (tj), (A

TB(α,β)Q1(tj)B
−1
(α,β)ΦT,N (tj)), (A

TB(α,β)Q2(tj)B
−1
(α,β)ΦT,N (tj)), ...,

(ATB(α,β)Qn(tj)B
−1
(α,β)ΦT,N (tj)), A

TΦT,N (tj − τ)), j = 0, 1, 2, . . . ,m. (3.3)

So, the system in Eq. (3.3) can be solved numerically for determining the unknwon vector A.
Therefore, the numerical solution that presented in Eq. (2.2) can be obtained.

4. Numerical experinces

Example 4.1. Consider the following multi-order fractional DE

Dη1(t)w(t) +Dη2(t)w(t) +Dη3(t)w(t)− w(t)− 2w(t)3 =

(
Γ(4)w(t)3−η1(t)

Γ(4− η1(t))
− Γ(3)w(t)2−η1(t)

Γ(3− η1(t))
) + (

Γ(4)w(t)3−η2(t)

Γ(4− η2(t))
− Γ(3)w(t)2−η2(t)

Γ(3− η2(t))
)+

(
Γ(4)w(t)3−η3(t)

Γ(4− η3(t))
− Γ(3)w(t)2−η3(t)

Γ(3− η3(t))
)− (t3 − t2)− 2(t3 − t2)3, w(0)(0) = 0. (4.1)

Note that w(t) = t3 − t2 is the exact solution and 0 ≤ t ≤ T, T = 1, η1(t) =
t

3
, η2(t) =

t

2
and

η3(t) =
2t

5
. The absolute errors (at some nodal points) of this method, also the CPU time needed

for our method for different values of α and β are shown in Table. (1). From this Table, it is
observed that the numerical results which obtained via our technique, are much closer to the true
solution.
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A difference scheme for fourth–order fractional partial
integro–differential equation

Mehran Taghipour, Hossein Aminikhah

Abstract. This work presents a difference scheme by considering cubic B–spline Quasi–interpolation
for the numerical solution of a fourth–order time–fractional integro–differential equation with a
weakly singular kernel. The fractional derivative of the mentioned equation has been described in
the Caputo sense. Time fractional derivative is approximated by a scheme of order O(τ2−α) and the
Riemann–Liouville fractional integral term is discretized by the fractional trapezoidal formula. The
spatial second derivative has been approximated using the second derivative of the cubic B–spline
Quasi–interpolation. The discrete scheme leads to the solution of a system of linear equations.

1. Introduction

In this work, we consider the fourth–order time–fractional integro–differential equation (PIDE) with
a weakly singular kernel as follows [1]:

CDα
0,tu(x, t)− uxx(x, t)− I(β)uxx(x, t) + uxxxx(x, t) = f(x, t), (x, t) ∈ Ω,

u(x, 0) = u0(x), 0 ≤ x ≤ L,

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0, 0 < t ≤ T,

(1.1)

where Ω = (0, L)× (0, T ], 0 < α, β < 1, f(x, t) is source term and u0(x) is given smooth function.
In fact, problem (1.1) is equivalent to

CDα
0,tu(x, t)− v(x, t)− I(β)v(x, t) + vxx(x, t) = f(x, t), (x, t) ∈ Ω,

v(x, t) = uxx(x, t), 0 < x < L, 0 < t ≤ T,

u(x, 0) = u0(x), 0 ≤ x ≤ L,

u(0, t) = u(L, t) = v(0, t) = v(L, t) = 0, 0 < t ≤ T.

(1.2)

In (1.2), CDα
0,t is fractional derivative operator in caputo sense and I(β) is defined as follows

I(β)uxx(x, t) =
1

Γ(β)

∫ t

0
(t− s)β−1uxx(x, s)ds, t > 0, (1.3)

where Γ(.) is the Gamma function. Equation (1.1), can be found in the modeling of floor systems,
window glasses, airplane wings, and bridge slabs.

Keywords: B–spline Quasi–interpolation, Time–fractional partial integro–differential equation, Weakly singular ker-
nel.
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fourth–order fractional partial integro–differential equation

2. Numerical method

The domain is divided into a uniform grid of mesh points (xj , tk) with xj = jh, h = L
M , 0 ≤ j ≤ M

and tk = kτ , τ = T
N , 0 ≤ k ≤ N . The values of the function u at the grid points are denoted u(xi, tk)

and Uk
i is the approximate solution at the point (xi, tk).

Definition 2.1. The Caputo derivatives of order α are defined by

CDα
a,xf(x) =

1

Γ(n− α)

∫ x

a

fn(t)

(x− t)α−n+1
dt, a < x. (2.1)

Lemma 2.2. (L1 approximation) Let α ∈ (0, 1) and u(., t) ∈ C2
t ([0, T ]) then the following approxi-

mation formula holds

CDα
0,tu(x, tk) =

τ−α

Γ(2− α)

[
b0u(x, tk)−

k−1∑
j=1

(bk−j−1 − bk−j)u(x, tj)− bk−1u(x, t0)
]
+R, (2.2)

in which

bj =
[
(l + 1)1−α − l1−α

]
, 0 ≤ l ≤ k − 1, (2.3)

|R| ≤ Cτ2−α (2.4)

Lemma 2.3. Let β ∈ (0, 1) and u(., t) is suitably smooth on (0, T ) then for the I(β) there holds
that

I(β)u(x, tk) =
k∑

j=0

aj,ku(x, tj) +O(τ2), (2.5)

where

aj,k =
τβ

Γ(β + 2)


(k − 1)β+1 − (k − 1− β)kβ, j = 0,

(k − j + 1)β+1 + (k − 1− j)β+1 − 2(k − j)β+1, 1 ≤ j ≤ k − 1,

1, j = k.

Definition 2.4. Suppose for a nonnegative integer p and some integer j that ξj−p−1 ≤ ξj−p ≤ · · · ≤
ξj are p+2 real numbers taken from a knot sequence ξ. The j–th B–spline Bj,p,ξ : R → R of degree
p is identically zero if ξj−p−1 = ξj and otherwise defined recursively by

Bj,p,ξ(x) =
x− ξj−p−1

ξj−1 − ξj−p−1
Bj−1,p−1,ξ(x) +

ξj − x

ξj − ξj−p
Bj,p−1,ξ(x), (2.6)

starting with

Bi,0,ξ(x) =

{
1, if x ∈ [ξi−1, ξi),

0, otherwise.

Let λj be a linear functional defined on C[a, b] that can be computed from values of f at some
set of points in [a, b]. We have the following definition.

Definition 2.5. [2] A formula of the form

Qpf(x) :=

n+p∑
j=1

(λjf)Bj,p,ξ(x), (2.7)

is called a B–spline quasi–interpolation formula of degree p.
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M. Taghipour, H. Aminikhah

Suppose a = x0 < · · · < xn = b are equally spaced points in the interval [a, b]. We have the
following theorem.

Theorem 2.6. [2] Given a function f defined on [a, b], let

λjf :=



f(x0), j = 1,
1
18(7f(x0) + 18f(x1)− 9f(x2) + 2f(x3)), j = 2,
1
6(−f(xj−3) + 8f(xj−2)− f(xj−1)), 3 ≤ j ≤ n+ 1,
1
18(2f(xn−3)− 9f(xn−2) + 18f(xn−1) + 7f(xn)), j = n+ 2,

f(xn), j = n+ 3.

(2.8)

Then (2.7) defines a linear operator mapping C[a, b] into the space of splines spanned by the B-splines
with Qps = s for all cubic polynomials s.

For approximate derivatives of f by derivatives of Q3f up to the order h3, we can evaluate the

value of f ′ and f ′′ at xj by (Q3f)
′(x) =

n+3∑
j=1

(λjf)Bj,p,ξ(x)
′
(x) and (Q3f)

′′(x) =
n+3∑
j=1

(λjf)Bj,p,ξ(x)
′′
(x).

We set Y = (f0, f1, . . . , fn)
T , Y ′ = (f ′

0, f
′
1, . . . , f

′
n)

T and Y ′′ = (f ′′
0 , f

′′
1 , . . . , f

′′
n)

T where f
′
j =

(Q3f)
′(xj), j = 1, . . . , n and f

′′
j = (Q3f)

′′(xj), j = 1, . . . , n. The first and the second derivatives of
Q3(f) are calculated as

f
′
j =

n+3∑
j=1

(λjf)Bj,p,ξ(x)
′
(x), j = 0, 1, . . . , n, (2.9)

f
′′
j =

n+3∑
j=1

(λjf)Bj,p,ξ(x)
′′
(x), j = 0, 1, . . . , n. (2.10)

Therefore, we can display the approximation of f ′ and f ′′ in the following matrix form

Y
′
=

1

h
D1Y, Y

′′
=

1

h2
D2Y, (2.11)

where D1, D2 ∈ R(n+1)×(n+1) are pentadiagonal matrices.
Considering (1.2) at the point (xi, tk), one has

Dα
0,tu(xi, tk)− v(xi, tk)− I(β)v(xi, tk) + vxx(xi, tk) = f(xi, tk),

v(xi, tk) = uxx(xi, tk), 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N.
(2.12)

Using (2.2),(2.5) and (2.9),(2.10),(2.12) can be approximated by

τ−α

Γ(2− α)

[
b0u

k
i −

k−1∑
j=1

(bk−j−1 − bk−j)u
j
i − bk−1u

0
i

]
− vki −

k∑
j=0

aj,kv
j
i +

M∑
j=0

d2ij
h2

vkj = fk
i + (R1)

k
i ,

(2.13)

vki =

M∑
j=0

d2ij
h2

ukj + (R2)
k
i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N, (2.14)

where |(R1)
k
i | ≤ C(τ2−α + h2) and |(R2)

k
i | ≤ Ch2. So that in each time step we encounter the

following system of linear equations
AUk = F k. (2.15)
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fourth–order fractional partial integro–differential equation

3. Numerical experiment

In this section, we use the following error norm

∥e(τ, h)∥ = ∥eN∥ =

(
∆x

M∑
j=1

(eNj )2
) 1

2

,

where ekj = u(xj , tk)− Uk
j .

Example 3.1. Consider the equations (1.1)-(1.3) with the exact solution u(x, t) = tα+β sin(πx).
The source term is

f(x, t) =

(
Γ(α+ β + 1)

Γ(β + 1)
t−α +

π2Γ(α+ β + 1)

Γ(2β + 1)
tβ + π2 + π4

)
tα+β sin(πx).

In Table 1, we record the absolute errors and convergence orders in spatial direction for different

Table 1: L2-norm errors and order of convergence for α = 0.1, 0.3, 0.5 and β = 0.1, 0.15, 0.45 for
Example 3.1

h τ α = 0.1 β = 0.1 τ α = 0.3 β = 0.15 τ α = 0.5 β = 0.45
1
55 ∥eN∥ r1(τ, h)

1
135 ∥eN∥ r1(τ, h)

1
15 ∥eN∥ r1(τ, h)

1
10 9.6233e-03 9.9334e-03 1.0321e-02
1
20 2.6307e-03 1.8711 2.6851e-03 1.8873 2.7430e-03 1.9116
1
40 6.4975e-04 2.0175 6.6955e-04 2.0037 6.7759e-04 2.0173
1
80 1.5008e-04 2.1141 1.6518e-04 2.0191 1.6533e-04 2.0350
1

160 2.5577e-05 2.5528 4.0002e-05 2.0459 3.8777e-05 2.0921
1

320 5.4572e-06 2.2286 8.8637e-06 2.1741 7.3685e-06 2.3958

values of α and β . We have used the following formula to calculate the convergence rate:

r1(τ, h) = log2

(
∥e(τ, 2h)∥
∥e(τ, h)∥

)
.
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A meshless method for solving the fractional Schnakenberg
model used to biological pattern formation

Marzieh Raei

Abstract. This paper develops a meshless collocation technique based on the radial basis functions
to simulate a famous two-dimensional reaction-diffusion system so-called Schnakenberg model with
Riesz space fractional derivatives in developmental biology. The Schnakenberg system is one of the
popular Turing pattern formations applied in biological pattern formation.

1. Introduction

The reaction-diffusion system has the beneficial property that causes generate pattern formation in
biology. Schnakenberg proposed one of the interesting reaction-diffusion models in 1979 based on the
hypothetical mechanism consisting of trimolecular autocatalytic reactions [1]. In this work, a two-
dimensional reaction-diffusion Schnakenberg model by replacing the second order space derivatives
with Riesz fractional derivative is specifically investigated as follows{

∂u(x,y,t)
∂t = ∂µu(x,y,t)

∂|x|µ + ∂µu(x,y,t)
∂|y|µ + γ(α− u(x, y, t) + u2(x, y, t)v(x, y, t)), (x, y, t) ∈ Ω× (0, T ),

∂v(x,y,t)
∂t = dv(

∂νv(x,y,t)
∂|x|ν + ∂νv(x,y,t)

∂|y|ν ) + γ(β − u2(x, y, t)v(x, y, t)), (x, y, t) ∈ Ω× (0, T ),
(1.1)

with boundary and initial conditions

u(x, y, t) = 0, v(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ), (1.2)
u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), (x, y) ∈ Ω, (1.3)

where u(x, y, t) and v(x, y, t) are the two chemical concentrations, α and β are positive constants,
γ is the positive scale parameter determined adequate to the dimensional of the computational
domain, and dv is the positive diffusion coefficient.

Moreover, ∂µu
∂|x|µ and ∂µu

∂|y|µ are Riesz fractional derivatives of order 1 < µ ≤ 2 and ∂νu
∂|x|ν and ∂νu

∂|y|ν
are Riesz fractional derivatives of order 1 < ν ≤ 2. In general form, the Riesz fractional derivative
of order n− 1 < σ ≤ n in x direction is defined on [a, b] as follows

∂σ

∂|x|σ
u(x, y, t) = − 1

2 cos πσ
2

[aD
σ
xu(x, y, t) +x D

σ
b u(x, y, t)] (1.4)

The left and right Riemann-Liouville fractional derivatives in above formula can be defined as follows

aD
σ
xu(x, y, t) =

1
Γ(n−σ)

∂n

∂xn

∫ x
a

u(η,y,t)
(x−η)σ−n+1

ηD
σ
b u(x, y, t) =

−1
Γ(n−σ)

∂n

∂xn

∫ b
x

u(η,y,t)
(η−x)σ−n+1 .

(1.5)

Keywords: Schnakenberg model, biological pattern formation, Riesz fractional derivative, meshless method, radial
basis functions.
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Meshless method for solving the space fractional Schnakenberg model

In this work, we apply an implicit finite difference procedure for time discretization. Then in the
time-independent system, to approximate the Riesz fractional derivatives, the Grünwald-Letnikov
formula is employed. The numerical results verify the accuracy and efficiency of the suggested
numerical method.

Riemann-Liouville fractional derivatives as follows

2. Numerical Procedure

In this section, first, an implicit finite difference formulation is suggested to discrete the problem
(1.1) in time direction. For this purpose, the time interval [0, T ] is uniformly decomposed into M
sub-intervals

∪M−1
j=0 [tj , tj+1] where tj = jτ , j = 0, · · · ,M and τ = T/M is time step size. The time

integer derivative can be discretized at two sequential time levels n+ 1 and n as follows

∂u(x, tn+1)

∂t
=

un+1 − un

τ
+O(τ),

∂v(x, tn+1)

∂t
=

vn+1 − vn

τ
+O(τ), (2.1)

Then by substituting t = tn+1 in the system (1.1) and using the relations (2.1), the following relation
is obtained: {

(1 + τγ)un+1 − τ(∂
µun+1

∂|x|µ + ∂µun+1

∂|y|µ ) = τγα+ τγGn+1 + un,

vn+1 − τdv(
∂νvn+1

∂|x|ν + ∂νvn+1

∂|y|ν ) = τγβ − τγGn+1 + vn,
(2.2)

where un = u(x, y, tn) and vn = v(x, y, tn) and Gn+1 = u2(x, y, tn+1)v(x, y, tn+1).
Moreover, the first-order shifted Grünwald-Letnikov operators could be applied to approximate

the left and right Riemann–Liouville fractional derivatives (1.5). Therefore, the space interval [a, b]
should uniformly decompose into N sub-intervals

∪N
i=0[xi, xi+1] where xi = a + ihx, i = 0, · · · , N

and hx = (b − a)/N . Thus by substituting x = xi in the time-independent relations (2.2), we
have [2]

aD
σ
xu(xi, y, t

n+1) = 1
hσ
x

∑i+1
k=0 ω

σ
ku(xi−k+1, y, t

n+1) +O(hx),

xD
σ
b u(xi, y, t

n+1) = 1
hσ
x

∑N−i+1
k=0 ωσ

ku(xi+k−1, y, t
n+1) +O(hx).

(2.3)

Furthermore, the space Riesz fractional could approximate by using the discritized formulae (2.3) in
x and y directions for fractional orders µ and ν. Therefore, by placing the shifted Grünwald-Letnikov
approximation in the time-independent relations (2.2) , the resulting finite difference equations are
obtained as follows

(1 + τγ)un+1
i,j − τ

(
Cxµ(

∑i+1
k=0 ω

µ
ku

n+1
i−k+1,j +

∑N−i+1
k=0 ωµ

ku
n+1
i+k−1,j) + Cyµ(

∑i+1
k=0 ω

µ
ku

n+1
j,i−k+1

+
∑N−i+1

k=0 ωµ
ku

n+1
j,i+k−1)

)
= τγα+ τγGn+1 + un

i,j , j = 1, 2, . . . , N,

vn+1
i,j − τdv

(
Cxν(

∑i+1
k=0 ω

ν
ku

n+1
i−k+1,j +

∑N−i+1
k=0 ων

ku
n+1
i+k−1,j) + Cyν(

∑i+1
k=0 ω

ν
ku

n+1
j,i−k+1

+
∑N−i+1

k=0 ων
ku

n+1
j,i+k−1)

)
= τγβ − τγGn+1 + vni,j , j = 1, 2, . . . , N,

(2.4)

where un+1
i,j = un+1(xi, yj), Cxµ = 1

2hµ
x cos(πµ

2
)
, Cyµ = 1

2hµ
y cos(πµ

2
)
, Cxν = 1

2hν
x cos(πν

2
) and Cyν =

1
2hν

y cos(πν
2
) .

Now, we could perform the collocation meshless method based on radial basis function on the
discritized relations (2.6) to approximate the numerical solutions u(x, y, t) and v(x, y, t). Therefore,
we briefly review the meshless collocation method based on RBFs. In this method, the numerical
solution of governing equations can be approximated by a linear combination of the RBFs as follows
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linear combination of the particular solutions of the given RBFs as follow:

u(x) ≃ û(x) =
n∑

i=1

λiΦi(x), x ∈ Ω, (2.5)

where Φi(x) = ∥x − xi∥ and {λi} are the undetermined coefficients. Also, in the current work, Φ
is thin plate spline (TPS) radial basis function. By applying the collocation method for discritized
equations (2.6) and boundary conditions (1.2), the following linear system of equations is obtained



[
(1 + τγ)

∑N
l=1 Φl(xi, yj)− τ

(
Cxµ(

∑i+1
k=0 ω

µ
k

∑N
l=1 Φl(xi−k+1, yj) +

∑N−i+1
k=0 ωµ

k

∑N
l=1 Φl(xi+k−1, yj)

+Cyµ(
∑i+1

k=0 ω
µ
k

∑N
l=1 Φl(xj , yi−k+1) +

∑N−i+1
k=0 ωµ

k

∑N
l=1 Φl(xj , yi+k−1)

)]
λu
l

= τγα+ τγGn+1 + un
i,j , i, j = 1, 2, . . . , Ni,[∑N

l=1 Φl(xi, yj)i,j − τdv

(
Cxν(

∑i+1
k=0 ω

ν
k

∑N
l=1 Φl(xi−k+1, yj) +

∑N−i+1
k=0 ων

k

∑N
l=1 Φl(xi+k−1, yj)

+Cyν(
∑i+1

k=0 ω
ν
k

∑N
l=1 Φl(xj , yi−k+1) +

∑N−i+1
k=0 ων

k

∑N
l=1 Φl(xj , yi+k−1)

)]
λv
l

= τγβ − τγGn+1 + vni,j , i, j = 1, 2, . . . , Ni,∑N
l=1 Φl(xi, yj)i,jλ

u
l = 0, i, j = Ni + 1, 2, . . . , N,∑N

l=1 Φl(xi, yj)i,jλ
v
l = 0, i, j = Ni + 1, 2, . . . , N.

(2.6)
Therefore, the numerical solutions could achieve by solving the 2N×2N linear system of equations.

3. Numerical results

As a benchmark problem, the Schnakenberg Model (1.1) on unit square Ω = (0, 1)2 with Dirichlet
boundary conditions (1.2) for both u and v variables. Moreover, The initial conditions are considered
by taking small random perturbations around the steady-state (us, vs) given by us = α + β and
vs =

β
(α+β)2

. To investigate the convergence of the presented numerical method, the following error
estimation is considered:

Ek
u = ∥uτ − u2τ∥∞.

The CPU time and error estimation concerning time step size τ at T = 3 by letting α = 0.1, β = 0.9,
γ = 660, and dv = 8.6676 for the space fractional derivative orders µ = ν = 1.5 is presented in
Figure 1. The time evolution of the activator concentration u with fix values of the parameters for
different time levels are demonstrated in Figure 2.

Figure 1: Error estimation and CPU time with respect to time step size τ .
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Meshless method for solving the space fractional Schnakenberg model

(a) (b)

(c) (d)

Figure 2: The contour plot of activator concentration u at different time levels (a) t = 0, (b) T = 0.05, (c)
T = 0.15, and (d) T = 0.25.
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The direct meshless local Petrove Galerkin method for
solving equations with distributed order derivatives

Ali Habibirad, Hadis Azin, Esmail Hesameddini

Abstract. In this work, a hybrid method is developed based on the generalized Moving least square
(GMLS) approximation and finite difference method for solving this distributed order equation. To
show the accuracy and efficiency of the proposed method we discuss an example.

1. Introduction

Equations with distributed order derivatives are a branch of fractional calculus that has recently
expanded due to its applications. These equations have many applications for modeling complex
systems. To see more properties and numerical solutions methods about equations with distributed
order derivatives see [1] and references therein. In this work, we study the following distributed
order time-fractional equation∫ 1

0
ϖ(α)Dα

t u(x, t)dα = ∆u(x, t) + u(x, t) + f(x, t), x ∈ Ω ⊆ R2, 0 ≤ t ≤ T, (1.1)

subject to the initial and boundary conditions{
u(x, 0) = u0(x),
u(x, t) = Ψ(x, t), x ∈ ∂Ω.

(1.2)

In which Dα
t u(x, t) shows the Caputo fractional derivative of u(x, t) which is given by

Dα
t u(x, t) =

1

Γ(1− α)

∫ t

0

∂u(x, r)
∂r

dr

(t− r)α
, 0 < α < 1, (1.3)

Also, the weight function ϖ(α) has the following conditions

ϖ(α) > 0, 0 <

∫ 1

0
ϖ(α)dα < ∞. (1.4)

One of the numerical methods that has been much considered by researchers in recent years is
meshless methods. Due to their high flexibility, these methods have the ability to solve problems
in regular and irregular domains. And unlike mesh-based methods, they often use nodes instead
of meshing to solve problems. This saves less time for the procedure. The beginning of these

Keywords: Distributed order fractional derivative, Time-fractional reaction diffusion equation, Caputo fractional
derivative.

AMS Mathematical Subject Classification [2010]: 65M12,65M60, 34A45.
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DMLPG method for solving equations

methods can be considered as the smooth particle hydrodynamics method. One of the meshless
schemes is the meshless local Petrov-Galerkin method (MLPG), which was invented in 1998 by
Atluri and Zhu [2]. The classic basis of this method is the moving least-squares approximation. By
changing the test function in this method, six different types are known which are named MLPG1,
MLPG2, MLPG3, MLPG4, MLPG5, and MLPG6. In these methods, numerical calculations are
traditionally performed on MLS shape functions and their derivatives. In this case, the complexity
of the shape functions and the lack of a closed-form of them require a large number of points (and
shape functions) for them to obtain accurate results. Therefore, MLS subroutines must be recalled
frequently, leading to high computational costs. To overcome this problem, Mirzaei and Schaback [3]
used the generalized MLS method and thus invented the direct meshless local Petrov-Galerkin
method (DMLPG) method. In the present paper, we use the DMLPG approach to discretization
the Eq (1.1) in space variables. At first, we introduce the GMLS method in section 2, the proposed
method is discussed in sec 3, to show the ability of the method one example is given in section 4,
and finally, a short conclusion is given in section 5.

2. The GMLS method

Suppose function u(x) is defined in the global bounded domain Ω ⊂ R2 with boundary ∂Ω. Also
assume {xi}ni=1 are randomly distributed in the global domain and Ωk is a subdomain for point xk.
In the classical MLS method, the following expression uh(x) is used to approximate function u(x)
as

uh(x) = pT (x)a(x), ∀x ∈ Ω, (2.1)

in which pT (x) = [p1(x), p2(x), . . . , pm(x)] is a vector matrix of complete monomial basis. As stated
in [4], if we consider the sub-domains in the form of a circle and also assume that only N points are
around the point x, in other words, the weight function is not zero in these N points, we get the
following expression:

uh(x) = aT (x)u =
N∑
j=1

aj(x)u(xj), (2.2)

in which aT (x) is the shape functions vector of MLS that defined as follows

aT (x) = pT (x)
(
P TWP

)−1
P TW. (2.3)

Also, two matrices P and W are defined as

P =


p1(x1) p2(x1) . . . pm(x1)
p1(x2) p2(x2) . . . pm(x2)
· · · · · · . . . · · ·

p1(xN ) p2(xN ) . . . pm(xN )


N×m

, W =


w1(x) 0 . . . 0
0 w2(x) . . . 0
· · · · · · . . . · · ·
0 0 . . . wN (x)


N×N

. (2.4)

Let λ(u) be a sufficiently smooth function. In the MLS scheme this function approximate by the
following form of shape functions

λ(u) ∼= λ(û) =

n∑
j=1

λ(aj)u(xj). (2.5)

Given this relationship, it is obvious that the act of λ(u) goes back to the shape functions aj and
requires a lot of calculations to calculate the proper accuracy, and if function λ(u) is complex, this

T
he

9t
h

Se
m

in
ar

on

Numerical Analysis and
its

A
pplications

١٨٨



A. Habibirad, H. Azin, E. Hesameddini

becomes more difficult. In GMLS approach, function λ(u) is approximated directly by the nodal
values {u(xi)}ni=1 without using the shape functions. This approximation is as follows

λ(û) =

n∑
j=1

aj(λ)u(xj). (2.6)

The GMLS estimation λ(û) can be calculated as λ(û) = λ(p∗) where p∗ ∈ P = span{p1, p2, . . . , pm},
is the minimizer of the weighted least-squares

n∑
j=1

wj(x)[p(xj)− u(xj)]
2, (2.7)

across all p ∈ P. The optimal solution a∗(λ) ∈ Rn can be demonstrated as

a∗(λ)T = λ(pT )
(
P TWP

)−1
P TW, (2.8)

in which the matrices P and W are introduce in (2.4) and

λ(pT ) = [λ(p1), . . . , λ(pm)] ∈ Rm. (2.9)

In this work, we use the following weight function as

wi(x) =

{
1− 6s2i + 8s3i − 3s4i , si ≤ 1,
0, si > 1,

(2.10)

in which si =
∥x−xi∥

ri
and ri is the size of support in the weight function. In the GMLS the functional

λ doesn’t act on shape functions, it indicates that integrations portray just over polynomials.

3. The proposed method

To construct the finite difference technique for the distributed order fractional in Eq. (1.1), let
τ =

T

nt
be the step size of time and define tn = nτ , n = 0, 1, 2, · · · , nt. The Caputo fractional

derivative D
αj

t u(x, t) in Eq. (1.1) is approximated by the L2− 1σ method [1] as follows (σ = 0.5)

D
αj

t u(x, tn+σ) =

n∑
l=0

τ−αj

Γ(2− αj)
c
(n+1,αj)
l (u(x, tn−l+1)− u(x, tn−l)) +O(τ3−αmax), (3.1)

where c
(n+1,αj)
l is introduced in [1]. Also, we use

u(x, t) =
1

2
(u(x, tn+1) + u(x, tn)) . (3.2)

Substituting (3.1) and (3.2) in (1.1), results in
n∑

l=0

d
(n+1)
l

(
ũ(x, tn−l+1)− ũ(x, tn−l)

)
− 1

2
∆
(
ũn+1 + ũn

)
+

1

2
(ũn+1 + ũn) = fn+ 1

2
, (3.3)

where d
(n+1)
l =

M∑
j=1

τ−αj

2Γ(2− αj)
ω̃jϖ(αj)c

(n+1,αj)
l and ũn = ũ(x, tn) is an approximation of the exact

solution u(x, tn). Now let {xi}ni=1 be the arbitrary nodes and scattered in global domain Ω. Also
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Figure 1: Global domain.

we assume a subdomain around every points. These subdomains can be any geometric shape and
they usually assume a circle in the two-dimensional case. DMLPG2 is used to the strong form (3.3)
directly by using the following approximations

λ1,k = ũ(xk) ∼= λ̂1,k(ũ) =
n∑

j=1

a1,j ũ(xj) λ2,k = ∆ũ(xk) ∼= λ̂2,k(ũ) =
n∑

j=1

a2,j ũ(xj) (3.4)

applying Eq (2.8) we get

(ai, :)
T = λi,k(pT )

(
P TWP

)−1
P TW, i = 1, 2, (3.5)

in which
λ1,k(p) = [p1(xk), . . . , pm(xk)] λ2,k(p) = [∆p1(xk), . . . ,∆pm(xk)]. (3.6)

To obtain the Dirichlet boundary conditions we used the relation (3.4).

4. Numerical results

In this section, a numerical example is studied to examine the accuracy of the presented method.
To compute the accuracy of results are used by absolute error as

L∞ = max
0≤j≤n

|ũj − uj |, (4.1)

L2 =
(∫

Ω
(u(x, T )− ũnt(x, T ))

2dx
) 1

2
, RMS =

√√√√√ M∑̄
i=1

(
u(x, T )− ũnt(x, T )

)2

M
.

where u and ũ are the exact solution and proposed numerical solution, respectively.

Example 4.1. We will check the following model∫ 1

0
ϖ(α)Dα

t u(x, t)dα−∆u(x, t) + u(x, t) = f(x, t), x = (x, y) ∈ Ω. (4.2)

Here, the analytical solution is u(x, y, t) = t2 sin(x) sin(y) and ϖ(α) = Γ(3 − α). We extract the
initial condition, Dirichlet boundary conditions and the source term f from the exact solution. The
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Table 1: The L2, L∞ and RMS errors and related convergence orders for Example 4.1 over Ω with different
final times.

T L2 L∞ RMS
1 8.8730E − 06 1.0072E − 06 4.1015E − 07
2 3.9574E − 06 4.4920E − 07 1.8243E − 07
3 2.2308E − 06 2.5322E − 07 1.0312E − 07
4 1.4299E − 06 1.6201E − 07 6.6097E − 08
5 9.9010E − 07 1.1204E − 07 4.5901E − 08

global domain is irregular shape Ω shown in Figure 1. The boundary of a global domain has the
following parametric formula{

(x, y) ∈ R2 : x = r cos(θ), y = r sin(θ), θ ∈ [0, 2π], r = 0.5

√
(cos(3θ) +

√
1.1− sin(3θ)2

}
. (4.3)

The number of interiors and boundary points are 342 and 126 respectively. Table 1 demonstrates the
numerical results for Example 4.1 have good accuracy in comparison with the analytical solution.

5. Conclusion

In this paper, a local collocation meshless scheme was used for the numerical solution of distributed
order time-fractional reaction-diffusion equation. The GMLS approximation and L2 − 1σ method
with the Gauss-Legendre numerical integration were employed to deal with this problem. One
example was studied and it showed the accuracy and capability of the presented technique for
solving such problems.
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Exponential basis functions with three shape parameters

Jamshid Saeidian, Bahareh Nouri

Abstract. We study a modification of the model presented in [3] through adding a suitable shape
parameter. The new curves have most of the features of the cubic Bézier curves with the advantage
that the new parameter enables us to adjust the shape of the corresponding Bézier-like curve. We
prove that the new curves have the monotony preservation property.

1. Introduction

As an important geometric modeling tool, the Bézier curve has been widely used in Computer Aided
Geometric Design (CAGD) and Computer Graphics (CG). For a set of control points, a Bézier curve
is defined based on Bernstein polynomials [2]. Once the control points are fixed, the shape of the
Bézier curve cannot be changed. In order to overcome this deficiency, many researchers have tried
to add shape parameters to the basis functions to create new curves whose structures are similar to
the Bézier curve. In [3], Zhu and Han presented a new class of λµ-Bernstein basis functions with
two shape parameters. The λµ-curves constructed by these basis have many basic properties of the
cubic Bézier curves, besides by altering shape parameters the curve travels from cubic Bézier curve
to control polygon.

In the present study, we modify the λµ-Bernstein basis functions by adding a new shape pa-
rameter, which enables the corresponding family of λµ-curve to travel between the control polygon
and the straight line joining the first and last control points.

2. New Basis Function

Definition 2.1. For shape parameters λ, µ ∈ [0,+∞] and ν ∈ [0, 1], the proposed blending Func-
tions bi (t;λ, µ, ν), are defined for t ∈ [0, 1] as

b0 (t;λ, ν) = (1− ν) (1− t)3 e−λt + ν (1− t)2 (1 + 2t)

b1 (t;λ, ν) = − (1− ν) (1− t)3 e−λt + (1− ν) (1− t)2 (1 + 2t) (2.1)

b2 (t;µ, ν) = − (1− ν) t3e−µ(1−t) + (1− ν)t2(3− 2t)

b3 (t;µ, ν) = (1− ν) t3e−µ(1−t) + νt2(3− 2t)

The graphical behavior of proposed basis functions defined in Eq.(2.1) and the effect of shape
parameter can be observed in Figure 1. For λ = µ = ν = 0, the blending Functions are the classical
cubic Bernstein basis functions, see [2].

Keywords: Bernstein basis, Blending functions, Bézier curve, Shape parameter.
AMS Mathematical Subject Classification [2010]: 65D17, 65D18.
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Figure 1: The plot of λµν- basis functions for various values of parameters

Theorem 2.2. For real numbers λ, µ ∈ [0,+∞] and ν ∈ [0, 1], the blending functions defined in
Definition 2.1 have the following properties:

(a) Linear independence: The blending functions bi (t;λ, µ, ν) i = 0, 1, 2, 3 are linearly indepen-
dent.

(b) Nonnegativity: bi (t;λ, µ, ν) ≥ 0 (i = 0, 1, 2, 3).

(c) Partition of unity:
∑3

i=0 bi (t;λ, µ, ν) = 1.

(d) Symmetry: bi (t;λ, µ, ν) = bn−i (1− t;λ, µ, ν) (i = 0, 1, 2, 3).

(e) Monotonicity: For a given parameter t ∈ (0, 1), b0 (t;λ, ν) and b3 (t;λ, ν) are monotonically
decreasing for shape parameters λ and µ, respectively; b1 (t;λ, ν) and b2 (t;λ, ν) are mono-
tonically increasing for shape parameters λ and µ, respectively. b1 (t;λ, ν) and b2 (t;λ, ν) are
monotonically decreasing for shape parameters ν , b0 (t;λ, ν) and b3 (t;λ, ν) are monotonically
increasing for shape parameters ν.

(f) Properties at the endpoints:

bi (0;λ, µ, ν) =

{
1, i = 0,

0, i 6= 0,
bi (1;λ, µ, ν) =

{
1, i = n,

0, i 6= n,

b′i (0, λ, µ, ν) =


−(1− ν)(3 + λ), i = 0,

(1− ν)(3 + λ), i = 1,

0, i = 2, 3,

b′i (1, λ, µ, ν) =


(1− ν)(3 + µ), i = 3,

−(1− ν)(3 + µ), i = 2,

0, i = 0, 1,
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Figure 2: The shape of curves with λ = 10, µ = 10 and different shape parameters ν.

Definition 2.3. Given control points Pi(i = 0, 1, 2, 3) in R2, for λ, µ ∈ [0,+∞] and ν ∈ [0, 1],

r(t) =

3∑
i=0

bi (t;λ, µ, ν)Pi, (2.2)

is called λµν-curve, where bi (t;λ, µ, ν) (i = 0, 1, 2, 3) are the blending functions expressed in (2.1).
Figure 2 shows the λµν-curve and the effect on the curves by altering the values of the shape

parameters at the same time under keeping the control points unchanged.
For λ = µ = ν = 0, the λµν-curve is the classical cubic Bernstein-Bézier curve, see [2].

Definition 2.4. [1] A system of functions (u0, . . . , un) is monotonicity preserving if for any α0 ≤
α1 ≤ . . . ≤ αn in R, the function

∑n
i=0 αiui is increasing.

Proposition 2.5. [1] Let (u0, . . . , un) be a system of functions defined on an interval [a, b]. Let
vi :=

∑n
j=i uj for i ∈ {0, 1, . . . , n}. Then (u0, . . . , un) is monotonicity preserving if and only if v0

is a constant function and the functions vi are increasing for i = 1, . . . , n.

Theorem 2.6. The blending functions (b0 (t;λ, ν) , b1 (t;λ, ν) , b2 (t;µ, ν) , b3 (t;µ, ν) defined in (2.1)
are monotonicity preserving.

From Theorem 2.2, the λµν-curve has the following properties,

(a) Geometric property at the endpoints:

r(0) = P0, r(1) = Pn,

r′(0) = (1− ν)(3 + λ) (P1 − P0) , r′(1) = (1− ν)(3 + λ) (P3 − P2) .

(b) Symmetry: From the symmetry of the λµν-basis functions, one has

r(t;P0, P1, P2, P3) = r(1− t;P3, P2, P1, P0).

(c) Geometric invariance: Because rn(t) is an affine combination of the control points, the shape
of the λµν-curve is independent of the choice of coordinate system.

r(t;P0 +Q,P1 +Q,P2 +Q,P3 +Q) = r(t;P0, P1, P2, P3) +Q,

r(t;MP0,MP1,MP2,MP3) = Mr(t;P0, P1, P2, P3).

(d) Convex hull property: Because the λµν-basis functions are nonnegative and sum to one, the
λµν-curve must lie inside the convex hull of its control polygon.
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Analysis of COVID-19 pandemic in Iran and Guilan based
on SIRU model

Hosssein Taheri, Nasrin Eghbali, Masoumeh Pourabd

Abstract. In this paper, we investigate the COVID-19 pandemic in Iran from a mathematical
modeling perspective. By improving the well-known susceptible infected recovered (SIR) family
of compartmental models and adding unreported cases obtain a local model for Iran. Also, Our
proposed model was able to predict well based on the data reported. Moreover, Our calculations
were run using MATLAB software. Since we only want infected cases, we have refused to add other
classes that there are can be.

1. Introduction

A novel corona-virus (nCoV), has been causing the deadliest pandemic from the last months of 2019
up to now, defined as the corona-virus disease 2019 (COVID-19) by the World Health Organization
(WHO). It is also known as severe acute respiratory syndrome 2 (SARS-CoV-2). The first cases that
occurred in early December 2019, had been reported in Wuhan, China. To date, many countries
and regions have been locked-down and applied strict social distancing measures to stop the virus
propagation. From a strategic and health care management perspective, the propag

ation pattern of the disease and the prediction of its spread over time are of great importance,
to save lives and minimize the s

ocial and economic consequences of the disease. There are five major types of models in t
he literature that can help us understand the transmissibility of the SARS-CoV-2 from its natural

reservoirs to humans. In references [1–5], the authors gave the following models for Covid -19. But,
finally by using reference [5], we believe that, the SIR model is the best mathematical model for the
prediction of pandemic Covid-19. A first tentative mathematical model of this pandemic (see [2]),
based on the Be-CoDiS model. For information of this model, see [3, 4].

2. The Model Description

Recently researchers identified the behavioral effects of the pandemic threat of Covid-19 which has
not been described by a

ny of the existing analytically models [6]. In this scenario, an infected individua
l instead of being removed(recovery) contributes to the infection spreading upon the reinfection

attempt. In this paper, we used a
new generalized SIR model, Susceptible-Infected(Reported and Unreported)- Susceptible- Rein-

fected (SIRUSI)to describe a

Keywords: Corona-virus pandemic globally; Mathematical modeling; SIRU-model; Parameter identification.
AMS Mathematical Subject Classification [2010]: Primary 26A33; Secondary 34D10, 45N05.
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Analysis of COVID-19 pandemic

nd predict the epidemics of Covid-19 in Iran and the province of Guilan, By this model, we can
find the daily number of unrepo

rted cases and we can estimate the n
umber of symptomatic unreported in
fectious individuals too. The model variables and parameters are given by Table 1 Our system

Table 1: The model variables and parameters description
parameters and variables Description

S(t) Number of susceptible populations at time t
I(t) Number of asymptomatic infectious at time t
R(t) Number of reported infected cases at time t
U(t) Number of unreported infected cases
t0 Time at which the epidemic started

S0 = S(t0) Number of susceptible at time t0
I0 = I(t0) Number of asymptomatic infectious at time t0
U0 = U(t0) Number of unreported cases at time t0

τ Contact transmission rate
1/ν Average time during which asymptomatic infectious are asymptomatic

ν1 = fν Rate at which asymptomatic infectious become reported symptomatic
ν2 = (1− f)ν Rate at which asymptomatic infectious become unreported symptomatic

1/µ Average time symptomatic infectious have symptoms

of equations was formulated based on the epidemic model (Fig.1) for COvid-19.
On the basis of the above-stated assumptions and the flow diagram of COVID-19 shown in Figure.1,

Figure 1: Modeling diagram for the transmission of Covid-19

we formulated a dynamical system consisting of four first-order differential equations shown below:

S′(t) = −τS(t)[I(t) + U(t)], (2.1)

I ′(t) = τS(t)[I(t) + U(t)]− νI(t),

R′(t) = ν1I(t)− µR(t),

U ′(t) = ν2I(t)− µU(t).

Where the parameter f , the fraction of asymptomatic infections that become reported symptomatic
infectious, this parameter plays an important role in our study. In short, we compare output data
by solving the model and real data. Then we evaluate f such that this difference between real data
and output data of the system should be minimal.
We consider these equations with initial conditions S(t0), I(t0), U(t0) and R(t0) = 0, Also we note
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that R(t0) = 0. It should be noted that due to the nature of this disease hardly anyone was immune
at the beginning of the epidemic, therefore, we assume that everyone in the understudy population
is susceptible to infection.

3. Main results

To solve the system (2.1) it is necessary that the parameters µ ,ν, N , f and s0 be determined. Note
thats0 is considered as the total population. Also, we assume 1/ν means that the average period
of infectiousness of both unreported symptomatic infectious individuals and reported symptomatic
infectious individuals is 14 days. We assume 1/µ, which means that the average period of infec-
tiousness of asymptomatic infectious individuals is 7 days. These values can be modified as further
epidemiological information becomes known. Here the parameter N is considered 5 days before the
peak day. Note that the results are not very sensitive to the value of N and can be considered 5 to
15 days before the peak day. As mentioned earlier the important parameter is f , so we principally
aim to gain the correct value of parameter f . To do this, we solve the system for different values of
f by the Least Square method for finding the best parameters and by the Runge-Kutta method for
solutions to the system of ODE. The results obtained from the system (2.1) for every value f are
compared to the principle reported data from [7], the correct value f is chosen by observing more
consistency between them. Also, to better compare the results and understand the importance of
the value of parameter f , In what follows, we plotted the graph of t → R(t) for different f ’s, as
shown in figure 2 by changing the value of f the number of infected individuals is obtained by
system (2.1) is changed.
It seems in the province of Guilan the reported infected cases are more real than in Iran’s reported

Figure 2: The values R(reported infected cases) of this diagram obtained from the solving of system (2.1)
in Iran for f = 0.5, f=0.6 and f=0.7. We compare them with real reported cases.

cases, With f = 0.9 we can get an estimation of the daily unreported cases in the first outbreak
period, the results are shown in figure3.
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Computational aspects of stochastic partial differential
equations using finite element method

Mahdieh Arezoomandan, Ali Reza Soheili

Abstract. This article describes the computational aspects of stochastic parabolic differential
equations driven by additive noise. A fully discrete approximation of the stochastic problem is
provided based on piecewise linear finite elements for the spacial discretization and the implicit Euler
method for the temporal discretization. The computational aspects of the method are illustrated
with a numerical test.

1. Introduction

Stochastic partial differential equations (SPDEs) are widely used models in applied sciences, engi-
neering, and finance. Hence, the design of efficient computational methods for such problems is of
great importance. In particular, the convergence analysis of numerical methods for approximating
the solution of SPDEs is one of the most recently developed areas [1–3]. The aim of this work is to
illustrate numerically the convergence properties of finite element method combined with implicit
Euler method for a class parabolic semilinear SPDE, of the form

du(t) +Au(t)dt = F (u(t))dt+ σ(t)dWQ(t), u(0) = u0, (1.1)

in a real separable Hilbert space H with inner product (·, ·) and norm ∥ · ∥ = (·, ·)
1
2 . Here, A

is assumed to be a linear, self adjoint, positive definite, not necessarily bounded operator with
compact inverse. Moreover, F : H → H is a smooth nonlinearity and σ : [0, T ] × H → H is a
deterministic mapping. {WQ(t)}t≥0 is considered to be a Q-Wiener process defined on a filtered
probability space (Ω,F ,P, {Ft}t≥0). The following assumptions are standard in the literature on
the numerical approximation of stochastic PDEs [4,5]. Let {ei}i∈N be a complete orthonormal basis
of the Hilbert space H and the covariance operator Q be the linear, bounded, self adjoint operator
on H such that Qv =

∑∞
i=1 qi⟨v, ei⟩ei, where {qi}i∈N is a sequence of non-negative real numbers.

We assume {WQ(t)}t≥0 is a Q- Wiener process defined as follows:

WQ(t) =

∞∑
i=1

√
qiβi(t)ei, (1.2)

where {βi}i∈N is a family of independent standard real valued Wiener processes. We assume that the
nonlinear operator F in (1.1) is globally Lipschitz continuous. We also assume that the deterministic
function σ : [0, T ]×H → H satisfies

∥A
β−1
2 σ(t)∥L0

2
≤ C, β ∈ [0, 1]. (1.3)

Keywords: stochastic partial differential equations, finite element methods,strong convergence rate, additive noise,
implicit Euler method.

AMS Mathematical Subject Classification [2010]: 60H15, 60H35, 65C30, 65 M65.
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In this work, we are concerned with full discrete approximation of stochastic problem (1.1) based on
the finite element spatial discretization combined with linear implicit Euler method for the temporal
discretization. Let ∆t = T

N denote the time step size and ti = i∆t, i = 1, 2, . . . , N . The full discrete
method is defined by

un+1
h = En

h,∆tu
n
h +∆tEn

h,∆tPhF (unh) + En
h,∆tPhσ(t)∆Wn

Q, (1.4)

for n = 1, . . . , N , where En
h,∆t := (1 + ∆tAh)

−1, with the initial condition u0h = Phu0. In (1.4), |the
Wiener increments are denoted by ∆Wn

Q = WQ((n+ 1)∆t)−WQ(n∆t).
Theorem 1.1. [5] Let u(t) be the solution of (1.1) and let unh be given by (1.4). Then, under the
given assumptions, it holds that

∥u(tn)− unh∥L2(Ω;H) ≤ C
(
hβ +∆t

β
2
)
, (1.5)

where C is a constant independent of h and ∆t.

2. Numerical test

In this subsection, we present a numerical test to illustrate the convergence analysis. We consider
the following stochastic problem

∂u

∂t
(x, t) =

∂2u

∂t2
(x, t) + f(x, t) = Ẇ , (2.1)

u(x, 0) = 10x2(1− x)2, x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, 1].

where
f(x, t) = 15etx2(1− x)2 − 10et(2− 12x+ 12x2).

we use a piecewise linear finite element method for the spatial discretization and an implicit Euler
method for the temporal discretization. Let unh be the approximate solution of u(t) in finite element
space Sh at tn = n∆t. The implicit Euler method is to find unh ∈ Sh such that, for all ϕ ∈ Sh,(un+1

h − unh
∆t

, ϕ
)
+ (Ahu

n
h, ϕ) =

( 1

∆t
Ph

(
WQ(tn)−WQ(tn−1)

)
, ϕ

)
(2.2)

=
1

∆t

∞∑
i=1

√
qi
(
βi(tn)− βi(tn−1)

)
(ei, ϕ), (2.3)

where 1
∆t

(
βi(tn) − βi(tn−1)

)
= N (0, 1). We choose two types of covariance operators, Q = I and

the other operator, Qe1 = 0 and Qei =
1

i log i2
ei for i ≥ 2. In Figure 1, we plot one realization of the

stochastic problem (2.1) for he two types of the covariance operators. We also plot in Figure 2 the
corresponding profiles at times t = 0.25, 0.5, 0.75 and final time T = 1. In Figure 3, we present the
convergence curves for the strong error for the covariance operator Q = I. At first, we demonstrate
the convergence rates for the temporal discretization. To do this, we compute the reference solution
with the small timstep ∆tref = 2−11 and href = 2−7. We perform our numerical simulation with
different time step sizes ∆tref = 2−i, i = 3, . . . , 9 and present the mean square errors in Figure 3
(left). As expected, we observe the convergence rate of order 1

4 , this is consistent with the strong
convergence estimates of Theorem 1.1. Next, we turn to spatial error approximation. To this
aim, we compute the reference solution using fixed small href = 2−10 and ∆tref = 2−6. We plot
in Figure 3 (right) the mean square errors due to the spatial discretization using the step sizes
h = 2−i, i = 2, . . . , 8.
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Figure 1: Samples of realization of SPDE (2.1) (left Q = I, Tr(Q) < ∞)
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Figure 2: Solution profile at different times (left Q = I, Tr(Q) < ∞)
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Figure 3: Error versus time stepsize (left) and space stepsize (right)
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

با غیرخطͬ معادلات حل برای حافظه با استیفنسن گون روش های تطبیقͬ حالت بررسͬ
ممͺن کارایی شاخص بیشترین

لاله چینͬ محمدجواد

کارایی شاخص بیشترین با غیرخطͬ معادلات حل برای حافظه با استیفنسن گون روش های تطبیقͬ حالت بررسͬ به مقاله این در چͺیده.
کارایی شاخص های بالاترین با حافظه با استیفنسنگون نوع از روش دو برای تطبیقͬ روش معرفͬ کار این اصلͬ هدف ͬ پردازیم. م ممͺن
ͬ توان م روش این در حال، این با است. بوده قبلͬ و فعلͬ تکرار بر فقط تمرکز همͽرایی، مرتبه بهبود برای موجود، روش های در است.
همͽرایی مرتبه بردن بالا برای روش هایی به ما بنابراین، بخشید. بهبود را همͽرایی مرتبه و کرده استفاده فعلͬ، تکرار تا تکرار اولین از

ͬ آوریم. م دست به بالایی کارایی شاخص های است ممͺن که آنجا تا و ͬ کنیم م پیدا دست

پیش گفتار .١
و .[٣] دارد وجود قبلͬ و فعلͬ تکرار بر تنها تمرکز همـͽرایی، مرتبه بهبود منظور به غیرخطͬ، معادلات حل برای موجود روش    های در
تکرار تا تکرار اولین به توجه با تطبیقͬ حالت در اما بخشند، بهبود را همͽرایی مرتبه دهنده شتاب پارامتر های از استفاده با است ممͺن
کار این اصلͬ هدف که بالا کارایی شاخص های با همͽرایی مرتبه بردن بالا برای را دستورالعمل های و حفظکرده را داده ها تمامͬ کنونͬ
است. صرفه به مقرون و بهینه الͽوریتم های ایجاد عددی، الͽوریتم های توسعه در موضوعات مهمترین از ͬͺی ͬ آوریم. م بدست است،
و ͬ باشد م شده داده خطͬ غیر معادله ͷی صفرهای از تقریبی آوردن بدست برای تکراری روش ͷی توسعه موضوعات، این از ͬͺی مثلا،
تبدیل حافظه با و تطبیقͬ صورت به را استیفنسن گون روش ما موضوع این به توجه با .[٢] است یافته اختصاص آن به بسیاری مطالعات

.[٢ ،١] ͬ کنیم م

استیفنسن روش توسعه .٢
.[۴] داد توسعه حافظه با صورت به را [١] استیفنسن گون روش تراب ابتدا در


wk = xk + γk f(xk),

xk+١ = xk − f(xk)
f [xk,wk]

, k = ٠, ١, ٢, . . . ,
γk+١ = − ١

N ′١(xk+١) ,

(١)

همͽرایی. مرتبه تطبیقͬ، روش حافظه، با روش استیفنسنگون، روش خطͬ، غیر معادلات کلیدی: واژه های
. 65H05; 49M15; 65J15 :[٢٠١٠] موضوعͬ طبقه بندی
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حافظه با استیفنسن گون روش های تطبیقͬ حالت بررسͬ

نیوتن درونیاب جمله ای چند ͷی N١(t) = f(xk+١) + (t − xk+١)f [xk+١, xk] و هستند، اولیه شده داده مقادیر γ٠ و x٠ که
به دیͽر پارامتر ͷی اضافهکردن با ͷدزونی این بر علاوه ͬ باشد. م ١ +

√٢ ≈ ٢٫۴١۴ برابر (١) حافظه با روش همͽرایی مرتبه است.
:[٢] آورد بدست را بیشتری کارایی با و حافظه با روش استیفنسن، روش

xk+١ = xk − f(xk)
f [xk,wk]+λk f(wk)

, k = ٠, ١, ٢, . . . ,
γk+١ = − ١

N ′٢(xk+١) ,

wk+١ = xk+١ + γk+١ f(xk+١),

λk+١ =
−N ′′٣ (wk+١)
٢N ′٣(wk+١) ,

(٢)

ͬ باشد. م ١٧√+٣
٢ ≈ ٣٫۵۶ برابر همͽرایی مرتبه دارای روش این هستند. اولیه شده داده مقادیر λ٠ و γ٠ و x٠ که

برای .[۵] کنیم ایجاد آن ها برتری از نظر صرف (١) و (٢) روش دو با منطبق حافظه با تطبیقͬ روش های خواهیمکرد تلاش ادامه در
همه ی از بلͺه قبلͬ، و فعلͬ تکرارهای موجوددر اطلاعات از استفاده با تنها نه تکرار هر در را γk دهنده شتاب پارامتر ابتدا منظور این
است. (١) مشابه آن در تابع فراخوانͬ که ٣٫۴ همͽرایی مرتبه دارای روش این ͬ کنیم م ثابت همچنین ͬ کنیم. م روز به آن قبلͬ تکرارهای
همͽرایی مرتبه که ͬ گیریم، م (٢) برای را حافظه با تطبیقͬ روش دیͽر بار ترتیب، همین به است. بهتر بسیار آن کارایی شاخص بنابراین
دهنده شتاب ͷی با موجود حافظه با روش های تمام از بهتر روش این بنابراین، ͬ آید. م بدست (٢) در مشابه تابع فراخوانͬ تعداد با ٣٫٩

ͬ باشد. م

حافظه با روش های تطبیقͬ حالت توسعه .٣
گسترش و اصلاح را (٢) و (١) روش های منظور، این برای ͬ گیرد. م قرار بررسͬ مورد حافظه با تطبیقͬ جدید روش دو با بخش این
فراخوانͬ که آن بدون برسد لازم همͽرایی مرتبه حداکثر به احتمالا تا گرفته نظر در را قبلͬ اطلاعات تمام آنها در که طوری به ͬ دهیم م

ͬ کنیم. م استفاده تطبیقͬ ایده ͷی از ما ترتیب، این به باشد. داشته جدیدی

حافظه با تطبیقͬ روش برای دهنده شتاب ͷی .٣. ١
همͽرایی مرتبه به و ͬ کنیم م استفاده قبلͬ و فعلͬ تکرارهای اطلاعات از فقط ما تکرار، هر در γk شتاب دهنده رسانͬ روز به برای (١) در
مرحله ٣ اطلاعات از بلͺه شود استفاده قدیمͬ اطلاعات از تنها نه است ممͺن ͬ رود، م پیش روش که همانطور حال، این با ͬ رسیم. م ٣
ببریم. بͺار حافظه با جدید روش های ساخت برای را تطبیقͬ ایده ͬ خواهیم م ما دیͽر، عبارت به شود. استفاده نیز قبلͬ گامهای و فعلͬ

ͬ کنیم: م معرفͬ را زیر حافظه با تطبیقͬ جدید روش اساس، این بر
wk = xk + γk f(xk),

xk+١ = xk − f(xk)
f [xk,wk]

, k = ٠, ١, ٢, . . . ,
γk+١ = − ١

N ′٢k+٢(xk+١) ,

(٣)

نقاط از استفاده با ٢k + ٢ درجه از نیوتن درونیاب جمله ای چند ͷی N٢k+٢(t) و ͬ باشند، م شده داده اولیه مقادیر γ٠ و x٠ که
ͬ باشد. م xk+١, wk, xk, . . . , w٠, x٠

ͬ توانیم نم است، نامشخص α که آنجا از ͬ یابد، م افزایش (٣) حافظه بدون روش همͽرایی مرتبه آنگاه است، ثابت γk نظربͽیریم در اگر
کنیم، استفاده f ′(α) ارزیابی برای آن از ͬ توانستیم نم هم باز بود، شده شناخته α که کنیم فرض اگر .حتͬ γ = −١/f ′(α) کنیم فرض
بر علاوه ͬ شود. م همͽرا α به {xk} دنباله که است این بر فرض ͬ برد. م بین از را روش بودن بهینه و داده افزایش را تابع فراخوانͬ زیرا
f ′(xk) جای به N ′٢k+٢(xk) ͬ توانیم م بنابراین، .k → ∞ که وقتͬ lim f ′(xk) = f ′(α) بنابراین است، پیوستگͬ دارای f ′ این
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لاله چینͬ م.

.γk = −١/N ′٢k+٢(xk) یعنͬ: کنیم. استفاده

حافظه با تطبیقͬ روش دهنده های شتاب .٣. ٢
آنها تکرار از لذا است، آمده (٣) در جزئیات بیشتر که آنجایی از .[۵] ͬ کنیم م معرفͬ را حافظه با تطبیقͬ روش شتاب دهنده های حالا

ͬ گیریم: م نظر در حافظه با تطبیقͬ روش برای را جدید دهنده شتاب دو و خودداریکرده

xk+١ = xk − f(xk)
f [xk,wk]+λk f(wk)

, k = ٠, ١, ٢, . . . ,
γk+١ = − ١

N ′٢k+٢(xk+١) ,

wk+١ = xk+١ + γk+١ f(xk+١),

λk+١ =
−N ′′٢k+٣(wk+١)
٢N ′٢k+٣(wk+١) ,

(۴)

داشت: خواهیم را زیر قضیه صورت درآن شده اند. انتخاب مناسبی صورت به λ٠ و γ٠ ، x٠ که

همͽرایی مرتبه معرف ترتیب به p و R همچنین باشد. ͷنزدی f از α ریشه به کافͬ اندازه به x٠ اولیه تقریب ͬ کنیم م فرض .١ قضیه
داشت: خواهیم صورت آن در ͬ آید. م بدست (۴) حافظه با تطبیقͬ روش در که باشد {wk} و {xk} دنباله

Rkp−Rk − (p+ ١)∑k−١
i=٠ Ri = ٠

Rk+١ − ٢Rk − ٢(p+ ١)∑k−١
i=٠ Ri = ٠

(۵)

عددی نتایج .۴

در منظور، این برای ͬ دهیم. م راگزارش آن ها عددی نتایج ،(۴) و (٣) حافظه با تطبیقͬ روش های کارآیی دادن نشان برای بخش، این در
در اولیه مقادیر این، بر علاوه جدول١). به کنید (نگاه ͬ کنیم م محدود تابع چهار نتایج به را شده،گزارش آزمایش مسائل از بسیاری میان
لازم ͬ شود. م مشاهده شده داده اولیه مقادیر به توجه با ،(۴) حافظه با تطبیقͬ روش های عددی نتایج ٢ جدول در و شده داده ١ جدول

است. ab دهنده نشان a(b) ͬ دهد، م نشان تکرار هر در را خطا |xk − α| که است ذکر به

.λ = ٠٫١،γ = ٠٫١ آزمایشͬ توابع :١ جدول
α x٠ مثال
٢/٠٠ ٢/۵٠ f١(t) = e(t

٢−۴) + sin(t− ٢)− t۴ + ١۵
١/٠٠ ٢/٠٠ f٢(t) = ١

t۴ − t٢ − ١
t + ١

٢/٠٠ ٢/۴٠ f٣(t) = (t− ٢)(t١٠ + t+ ٢)e−۵t

٠/٠٠ ٠/۴۵ f۴(t) = e(t
٣−٢t) + sin(t) + log (t٢ + ١)

(نگاه برسد مشابه کارایی شاخص ͷی به ͬ تواند م تابع فراخوانͬ دو با تنها (۴) حافظه با تطبیقͬ  جدید روش که کرده ایم ثابت اینجا تا
ͬ کند. م رقابت حافظه بدون بهین گامͬ چند روش هر با روش این که است معنͬ بدان این .((١) قضیه به کنید
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حافظه با استیفنسن گون روش های تطبیقͬ حالت بررسͬ

.(۴) رابطه برای عددی نتایج :٢ جدول
COC |x٣ − α| |x٢ − α| |x١ − α| تابع.
۴/٠٠٧٨ ٠/١۵(٧‐)٨١ (١‐)٠/١٠٢٨ (٠)٠/٢٩٠٢ f١
٣/٩١١۵ (٨‐)٠/٢٢٠٠ ٠/٢۵۵۴(‐٢) (١‐)٠/٩٠٧٣ f٢
٣/٩۶٠٣ ٠/١۵(١١‐)٨٢ ٠/١٠٠۶(‐٢) ٠/١۶(٠)٨١ f٣
۴/٠٧٨۴ ٠/۵۵(١١‐)٢٩ ٠/۴(٣‐)٧١٨ ٠/۴١۵(١‐)٣ f۴

ͬͺدینامی رفتار .۵

استفاده [۵] بصری ͬͺدینامی روش از منظور این برای ͬ کنیم. م تمرکز (۴) و (٣) حافظه ͬ  با تطبیق روش های پایدار رفتار روی ما این جا در
روش های پایداری دادن نشان برای یافته ایم. دست مشابهͬ گیری نتیجه به اما آزمایشکرده ایم، را بسیاری نمونه های ما چه اگر ͬ کنیم. م
تمرکز تکراری روش های به مربوط ͬͺدینامی صفحات روی بر و بررسͬکرده را ͬͺدینامی خواص پارامتری(۴)، دو و (٣) پارامتری ͷی
نوعͬ به اما هستند، برتری دارای محاسباتͬ ͬ های پیچیدگ لحاظ از حافظه، با یافته توسعه روش های هرچند ͬ دهد م نشان نتایج ͬ کنیم. م

ͬ شود. م دیده آن ها در عددی ناپایداری

شͺل٢ (ب) شͺل١ (آ)

گیری نتیجه .۶

به ͬ توانند م روش ها این که داده ایم نشان ایجادکردیم. خطͬ غیر معادله حل برای حافظه با کارآمد بسیار اما جدید روش دو کار، این در
روش هر مانند و کنند. رقابت مبحث این در حافظه بدون یا حافظه با روش هر با ͬ توانند م و یابند دست کارآیی شاخص های بالاترین
از و ͬ برند م سود محاسباتͬ کارایی از آنها بنابراین، دهد. نشان عمل در را ثباتͬ بی ͷی حافظه با روش است ممͺن مبحث، این در دیͽر
توسعه حافظه با روش ͷی در ͬ توان م چͽونه ͬ کنیم: م مطرح زیر تحقیق سوال با را گیری نتیجه نهایت، در ͬ برند. م رنج عددی پایداری

دارد؟ وجود عددی پایداری ͷی آن رفتار در که داد نشان یافته
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لاله چینͬ م.
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

PDE محدودیت با بهینه سازی مسئلۀ حل برای تکراری روش ͷی

سالͺویه خجسته  داود میرچͬ، حمید

از آن ضرایب ماتریس که ͬ کنیم م معرفͬ خطͬ معادلات دستگاه ͷی حل برای دومرحله ای تکراری روش ͷی مقاله این در چͺیده.
ارائه روش همͽرایی ادامه در ͬ آید. م بدست متناهͬ عناصر روش ͷکم به زمان‐متناوب سهموی بهینۀ کنترل مسئله ͷی گسسته سازی

ͬ شود. م ارائه روش این به کارگیری از حاصل عددی نتایج و شده

پیش گفتار .١
:[٢] ͬ گیریم م نظر در را زیر کنترلͬ مساله

min
y,u

١
٢
∫ T

٠

∫
Ω
|y(x, t)− yd(x, t)|٢dxdt+

ν

٢
∫ T

٠

∫
Ω
|u(x, t)|٢dxdt, (١)

s.t. ∂

∂t
y(x, t)−∆y(x, t) = u(x, t) in QT ,

y(x, t) = ٠ on ΣT ,

y(x, ٠) = y(x, T ) on ∂Ω,

u(x, ٠) = u(x, T ) in Ω,

مͺان١ زمان استوانۀ QT = Ω × (٠, T ) همچنین است. Ω مرز ∂Ω و d = {١, ٢, ٣} برای Rd در وکراندار باز دامنۀ Ω آن در که
ͬ باشد. م ΣT = ∂Ω× (٠, T ) آن جانبی سطح و است

برای ω = ٢πm
T آن در که ͬ گیریم، م نظر در را yd(x, t) = yd(x)e

iωt زمان‐متناوب٢ تابع ابتدا مسئله این گسسته سازی برای
که است u(x, t) = u(x)eiωt و y(x, t) = y(x)eiωt صورت به زمان‐متناوب مسئله کنترل تابع و جواب .[٣] Z در m برخͬ

هستند، زیر بهینۀ کنترل مسئله جواب u(x) و y(x)

min
y,u

١
٢
∫
Ω
|y(x)− yd(x)|٢ dx+

ν

٢
∫
Ω
|u(x)|٢ dx, (٢)

s.t. iωy(x)−∆y(x) = u(x) in Ω,

u(x) = ٠ on ∂Ω.

سازی. بهینه خطͬ، معادلات دستگاه تکراری، روش سازی، شرط پیش شده، توزیع کنترلͬ مسأله کلیدی: واژه های
.49M25، 49K20، 65F10 :[٢٠١٠] موضوعͬ طبقه بندی

1space-time cylinder
2time-periodic
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بهینه سازی مسئلۀ حل برای تکراری روش ͷی

ͬ شود. م نظرگرفته در مختلط u(x) کنترل تابع و هستند حقیقͬ y(x) و yd(x) ͬ کنیم م فرض ادامه در
پایه ای توابع با بعدی m برداری فضای ͷی Vh ⊂ H١٠ (Ω) کنیم فرض متناهͬ، عناصر روش ͷکم به گسسته سازی روند در
سپس و گسسته سازی ایدۀ از استفاده با همچنین ͬ کنیم. م استفاده Vh زیرفضای از u و y محاسبۀ برای باشد. {ϕ١, ϕ٢, . . . , ϕm}

ͬ شود م بازنویسͬ زیر به صورت (٢) مسئله ،[۴] بهینه سازی

min
y,u

١
٢(ȳ − ȳd)

∗M(ȳ − ȳd) +
ν

٢ ū
∗Mū, (٣)

s.t. iωMȳ +Kȳ = Mū,

هستند). متقارن مثبت معین ماتریس هردو که دید ͬ توان (م هستند سخت۴ͬ ماتریس K و جرم٣ ماتریس M حقیقͬ ماتریس آن در که
توابع به مربوط بسط های ضرائب شامل که ū و ȳd ،ȳ بردارهای به به ترتیب گسسته سازی شده درصورت u(x) و yd(x) ،y(x) همچنین

یافته اند. تغییر هستند، متناهͬ عناصر روش پایه ای
به صورت (٣) مسئله لاگرانژ تابع

L(ȳ, ū, p̄) =
١
٢(ȳ − ȳd)

∗M(ȳ − ȳd) +
ν

٢ ū
∗Mū+ p̄∗(iwMȳ +Kȳ −Mū), (۴)

ͬ آید م بدست زیر دستگاه ، q̄ = ١√
ν
p̄ جای گذاری با و (۴) لاگرانژ تابع برای اول مرتبۀ لازم شرایط نظرگرفتن در با که است

Ax =

(
M

√
ν(K − iωM)

√
ν(K + iωM) −M

)(
ȳ

q̄

)
=

(
Mȳd

٠

)
= b. (۵)

داشت خواهیم دستگاه دوم سطر از ،q̄ = −z + it گرفتن نظر در با و است حقیقͬ ȳ که این به توجه با ،(۵) دستگاه در حال
ͬ شود م حاصل زیر دستگاه دوم، و اول سطر تعویض و x =

√١ + νωt جای گذاری با .t = √
νωȳ

A١x =

(√
νK τM

−τM
√
νK

)(
z

x

)
=

(
٠

−Mȳd

)
= b١, (۶)

است، شده ارائه [١] در همͺاران و بای توسط که ۵MHSS روش از ͬ توان م (۶) دستگاه حل برای است. τ =
√١ + νω٢ آن در که

صورت به دومرحله ای تکراری روش این استفادهکرد.

(
αV +

√
νK ٠

٠ αV +
√
νK

)(
z(k+

١
٢ )

x(k+
١
٢ )

)
=

(
αV −τM

τM αV

)(
z(k)

x(k)

)
+

(
٠

−Mȳd

)
(
αV + τM ٠

٠ αV + τM

)(
z(k+١)

x(k+١)

)
=

(
αV

√
νK

−
√
νK αV

)(
z(k+

١
٢ )

x(k+
١
٢ )

)
+

(
Mȳd

٠

)

ͷی ،[١] مقالۀ مطالب به توجه با است. متقارن مثبت معین ماتریس ͷی V ∈ Rn×n و مثبت و حقیقͬ مقدار ͷی α آن در که ͬ باشد، م
دستگاه دو ضرایب ماتریس که شود حل دستگاه چهار باید MHSS روش از تکرار هر در ͬ باشد. م √νK ماتریس V برای انتخاب

ͬ باشند. م αV + τM دیͽر دستگاه دو ضرایب ماتریس و αV +
√
νK

هستیم. رو به رو ضرایب ماتریس ͷی با فقط روش این تکرار هر در و است پارامتر بدون ͬ کنیم م ارائه ادامه در که روشͬ
3mass matrix
4stiffness matrix
5modified Hermitian and skew-Hermitian
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سالͺویه خجسته  د. میرچͬ، ح.

اصلͬ نتایج .٢
بͽیرید نظر در را زیر شͺافت (۶) دستگاه برای

A١ =

(√
νK ٠
٠ √

νK

)
+

( ٠ τM

−τM ٠

)
.

ͬ کنیم م معرفͬ را زیر مرحله ای دو تکراری روش شͺافت این ͷکم }به
Kx(k+ ١

٢ ) = J x(k) + b١,
Mx(k+١) = Nx(k+ ١

٢ ) + b١,
(٧)

آن در که

K =

(√
νK + τM ٠

٠ √
νK + τM

)
, J =

(
τM −τM

τM τM

)
,

M =

(
٠ √

νK + τM

−(
√
νK + τM) ٠

)
, N =

(
−
√
νK

√
νK

−
√
νK −

√
νK

)
.

مرحله ای ͷی تکراری روش دوم معادلۀ در جای گذاری و (٧) اول معادله از x(k+ ١
٢ ) بردار محاسبۀ با

x(k+١) = M−١NK−١J x(k) +M−١(NK−١b١ + b١), (٨)

ͬ آید. م بدست
ویژه مقادیر همچنین .s ∈ σ(M−١K) آن در که هستند، µ = ١

١
٢ (

√
ν

τ
s+ τ√

ν
١
s
)+١ صورت Hبه تکرار ماتریس ویژۀ مقادیر .١ قضیه

دارند. قرار (٠, ١
٢ ] بازۀ در

ͬ کند م صدق زیر رابطۀ در ،H = M−١NK−١J یعنͬ ، (٨) روش تکرار ماتریس اثبات.

H =

(
F−١ ٠

٠ F−١

)
, (٩)

به صورت H تکرار ماتریس ویژۀ مقادیر بنابراین، است. F =
√
ν

٢τ M−١K + τ
٢√ν

K−١M + I آن در که

µ =
١

١
٢(

√
ν
τ s+ τ√

ν
١
s ) + ١ ,

ماتریس ͷی که است متشابه M− ١
٢KM− ١

٢ ماتریس با P ماتریس است. P = M−١K ماتریس ویژۀ مقدار ͷی s آن در که هستند،
بنابراین، .s > ٠ نتیجه، در است. متقارن مثبت معین

√
ν

τ
s+

τ√
ν

١
s
≥ ٢,

ͬ آید. م به دست لازم نتیجۀ که
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بهینه سازی مسئلۀ حل برای تکراری روش ͷی

.h = ٧−٢ به مربوط عددی نتایج :١ جدول

ω = ١٠−۴ ω = ٢−١٠ ω = ١٠٠ ω = ١٠٢ ω = ١٠۴

روش ν Its CPU Its CPU Its CPU Its CPU Its CPU
New method ٢−١٠ ١۴ ٠.٨٨ ١۴ ٠.٨٩ ١۴ ٠.٨٨ ١٩ ٠.٩۶ ١٨ ٠.٩۴

١٠−۴ ١٩ ١.١١ ١٩ ١.٠٩ ١٩ ١.١٣ ١٩ ١.٠٩ ١٨ ١.٠۴
١٠−۶ ١٨ ١.١١ ١٩ ١.١٠ ١٩ ١.١٧ ١٩ ٠.٩٢ ١٨ ١.٠۴
٨−١٠ ١٨ ١.١۵ ١٨ ١.٠٣ ١٨ ١.٠١ ١٨ ٠.٩۴ ١٨ ١.٠٩

MHSS method ٢−١٠ ٣٩ ٢.٣٠ ٣٩ ٢.١۵ ٣٩ ٢.١٣ ٣۶ ١.٩۶ ٣٨ ٢.٠۵
١٠−۴ ٣۶ ١.٨٨ ٣۶ ١.٩٩ ٣۶ ١.٩۴ ٣۶ ١.٩٢ ٣٨ ٢.٠۵
١٠−۶ ٣٨ ٢.١١ ٣٣ ١.٨٢ ٣٣ ١.٨٩ ٣٣ ٠.٨٣ ٣٨ ١.٩٧
٨−١٠ ٣٨ ٢.١۶ ٣٨ ١.٨٢ ٣٨ ٢.١۵ ٣٨ ٢.٠۴ ٣٨ ٢.١٢

عددی نتایج .٣
مطلوب حالت و Ω = (٠, ١)× (٠, ١) ∈ R٢ دامنه با بعدی دو بهینه کنترل مساله

yd(x, y) =

{
(٢x− ٢)٢(١y − ٢(١, اگر (x, y) ∈ (٠, ١

٢)× (٠, ١
٢),

٠, صورت این غیر ,در (١٠)

هر در روش این به کارگیری در ͬ کنیم. م پیاده سازی را شده ارائه تکراری روش گسسته سازی، از حاصل دستگاه برای نظرگرفته ایم. در را
MHSS روش با شده ارائه روش مقایسۀ از حاصل عددی نتایج ͬ شوند. م حل ͬͺچولس تجزیۀ ͷکم به حاصل درونͬ دستگاه های تکرار
١٠۶ اندازه به مانده نرم که ͬ شود م متوقف وقتͬ تکرار روش دو هر در است. آمده ١ جدول در ν و ω مختلف مقادیر و h = ٧−٢ برای
شده نظرگرفته در ١ به برابر α مقدار MHSS روش در همچنین است. شده نظرگرفته در صفر بردار همواره اولیه حدس و یابد  کاهش
هشت و 2.60 GHz (Intel(R) core(TM) i7-4510) پردازندۀ با تاپ لپ ͷی توسط ٢٠١٨ متلب برنامۀ در اجراها کلیه است.
نتایج است. اجرا زمان نمایش “CPU” و تکرار تعداد دهنده نشان “Its” (١) جدول در شده اند. انجام ١٠ ویندوز در و RAM گیͽابایت

ͬ دهد. م نشان را MHSS روش بر شده ارائه روش برتری خوبی به جدول

مراجع
[1] Z.Z. Bai, M. Benzi, F. Chen, Z.Q. Wang, Preconditioned MHSS iteration methods for a class of block

two-by-two linear systems with applications to distributed control problems, IMA Journal of Numer-
ical Analysis, 33 (2013) 343–369.

[2] M. Kollmann, M. Kolmbauer, A preconditioned minres solver for time-periodic parabolic optimal
control problems, Numerical Linear Algebra with Applications, 20 (2012) 761–784.

[3] M. Kolmbauer, U. Langer, A robust preconditioned minres solver for distributed time-periodic eddy
current optimal control problems, SIAM Journal on Scientific Computing, 34 (2012) 785–809.

[4] T. Rees, H.S. Dollar, A.J. Wathen, Optimal solvers for PDE-constrained optimization, SIAMJournal
on Scientific Computing, 32 (2010) 271–298.
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

ابری سرویس های رتبه بندی و انتخاب در Topsis روش

زعفرانیه مهدی رضوی، شاه بخش امیر حسین

تصمیم گیرنده که وگزینه ها شاخص ها وزن دهͬ برای فقط که است معیاره چند تصمیم گیری روش های از ͬͺی شانون آنتروپی چͺیده.
انجام رتبه بندیگزینه ها topsis روش با و ͬ گیرد م قرار استفاده مورد ابری سرویس های انتخاب جمله از مختلف مسائل در ͬ کند م تعیین
ͬ پذیرد م صورت شاخص هر براساس مختلف بینگزینه های مقایسه هایی ابری سرویس های ͬ های ویژگ اساس بر پژوهش این در ͬ شود. م
شاخص از مختلف ابری سرویس های مقایسه برای مقاله این در ͬ گردد. م انتخاب ابری سرویس بهترین تصمیم بینگزینه های رتبه بندی با و

است. شده استفاده ͬ شود، م تعیین ابری سرویس های مشترک ͬ های ویژگ اساس بر که خدمات اندازه گیری

پیش گفتار .١
کامپیوترهایی از گسترده ردیفͬ حقیقت در شده اند. پخش زمین سرتاسر در که است دیتاسنترهایی از جهانͬ، شبͺه ی ͷی ابری شبͺه
شبͺه های در فعالیت فایل ها، پشتیبان گیری ذخیره سازی، پردازش، چون سرویس هایی شبͺه ها این شده اند. متصل یͺدیͽر به که است
داشته دسترسͬ آنها به اینترنت طریق از و دور راه از بتوانند کاربران تا ͬ دهند م قرار کاربران اختیار در را آنلاین خرید حتͬ و اجتماعͬ
بهره به خاصͬ، تنظیمات هیچ گونه اعمال به نیاز بدون بتوانند کاربران تا ͬ شوند م پیͺربندی پیش از کاملا ابری سرویس های .[٢] باشند
ذیل در خلاصه طور به کدام هر که ͬ گردد م ارائه مشتریان برای ذیل صورت سه به ابری خدمات مختلف مدل های بپردازد، آن از بردن

.[٣] است شده داده توضیح
ظرفیت و پردازش قدرت شبͺه، ایجاد همچون ویژگͬ با جدا ٢ داده مرکز ͷی و IaaS سرویس ͷی عنوان به ساختͬ زیر :١IaaS

کنند. استفاده آنها از بتوانند و داشته دسترسͬ منابع این به مستقیم طور به کاربران ͬ دهد م اجازه که است سازی ذخیره
راه اندازی و ارزیابی ساخت، برای مناسب اجزای و ابزار با ساختاری صورت به که است سرویس ͷی صورت به پلتفرمͬ :٣PaaS

است. شده ارائه اپلیͺیشن
است. شده طراحͬ کار و کسب دنیای مختلف نیازهای اساس بر و سرویس ͷی عنوان به که است نرم افزاری :۴SaaS

رتبه بندی و معیارها وزن دهͬ برای topsis و مراتبی سلسله تحلیل روش از [١] مقاله در و مراتبی سلسله تحلیل روش از [۴] مقاله در
ͬ باشد. م برخوردار بالاتری دقت از آمده بدست جواب های پژوهش این در ولͬ است، شده استفاده ابری سرویس های گزینه های

معیاره. چند بهینه سازی مساله اشیاء، اینترنت مصنوعͬ، هوش کلیدی: واژه های
.97Rxx، 90Bxx, 97R40 :[٢٠١٠] موضوعͬ طبقه بندی

1Infrastructure as a service
2Data center
3Platform as a service
4Software as a service
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ابری سرویس های بندی رتبه و انتخاب در Topsis روش

TOPSIS روش و شانون آنتروپی .٢

موجود، شاخص های نسبی وزن های دانستن و داشتن شاخصه، چند تصميم گيري مسائل بخصوص و معياره چند تصميم گيري مسائل در
شاخص ͷی مقادیر در پراکندگͬ چه هر که است آن شانون آنتروپی اصلͬ ایده است. نياز مورد و بوده مسئله حل فرآيند در مؤثری گام
وزن محاسبه برای معیاره چند گیری تصمیم روش های از ͬͺی آنتروپی روش است برخوردار بیشتری اهمیت از شاخص آن باشد بیشتر

.[۵] ͬ شود م خلاصه ذیل گام پنج در که ͬ باشد، م معیارها

ͬ دهیم. م تشͺیل را تصمیم ماتریس ابتدا گام١: •

که ͬ باشد م صورت این به شدن نرمال ͬ نامیم. م Pij را شده نرمال درایه هر و ͬ کنیم م سازی نرمال را آمده بدست ماتریس گام٢: •
ͬ کنیم. م تقسیم ستون مجموع بر را ستون هر درایه

ͬ گردد: م محاسبه ذیل صورت به Ej آنتروپی شاخص: هر آنتروپی محاسبه گام٣: •

Ej = −k

m∑
i=١

Pij ∗ LnPij , i = ١, ٢, ...,m. (١)

تصمیم برای مفید اطلاعات میزان چه (dj) مربوطه شاخص کند مͬ بیان که شود مͬ محاسبه انحراف) (درجه dj مقدار گام۴: •
است آن دهنده نشان باشند ͷنزدی هم به شاخصͬ شده گیری اندازه مقادیر چه هر دهد. مͬ قرار گیرنده تصمیم اختیار در گیری

ندارند: یͺدیͽر با چندانͬ تفاوت شاخص آن نظر از رقیب های کهگزینه

dj = ١ − Ej . (٢)

باشد: مͬ ها dj مجموع بر تقسیم dj هر با برابر معیار وزن واقع در مͬگردد. محاسبه Wj وزن مقدار گام۵: •

Wj =
dj∑
dj

. (٣)

ذیل گام پنج در روش این ͬ پردازد. م گزینه ها رتبه بندی به که است شاخصه چند تصمیم گیری روش های از ͬͺی TOPSIS روش
.[۶] ͬ شود م خلاصه

ͬ شود: م محاسبه (٢) رابطه به توجه با که تصمیم ماتریس نرمال سازی :١ گام •

rij =
xij√∑m
i=١ x٢

ij

i = ١, . . . ,m, j = ١, . . . , n. (۴)

ماتریس در است، آمده به دست مراتبی سلسله تحلیل روش از که (W = [w١, . . . , wn] (بردار معیارها وزن گام این در :٢ گام •
شود: محاسبه W ′ وزن دار ماتریس تا ͬ شود م ضرب ١ گام نرمال

w
′
ij = wjrij . (۵)
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زعفرانیه م. رضوی، شاه بخش ا.

که حالتͬ در منفͬ و مثبت ایده آل جواب های نوع گام این در معیارها، هزینه) (مانند منفͬ و مثبت۵ جنبه های به توجه با :٣ گام •
ͬ شود: م مشخص (٩) و (٨) روابط اساس بر باشد، منفͬ معیار که حالتͬ در و (٧) و (۶) روابط اساس بر باشد، مثبت معیار

s+j = max
i=١,...,m{w

′
ij}, (۶)

s−j = min
i=١,...,m{w

′
ij}, (٧)

s+j = min
i=١,...,m{w

′
ij}, (٨)

s−j = max
i=١,...,m{w

′
ij}. (٩)

ͬ شود: م محاسبه منفͬ و مثبت ایده آل جواب از هرگزینه اقلیدسͬ فاصله ،(۶) رابطه  اساس بر گام این در :۴ گام

d+i =

√√√√ n∑
j=١

(w
′
ij − s+j )

٢ d−i =

√√√√ n∑
j=١

(w
′
ij − s−j )

٢. (١٠)

این هرچقدر ͬ شود. م محاسبه (٧) رابطه اساس بر است، گزینه هر امتیاز نشان دهنده که شباهت شاخص گام این در :۵ گام •
ͬ دهد: م نشان را آنگزینه برتری باشد، نزدیͺتر ͷی عدد به شاخص

Ci =
d−i

d−i + d+i
. (١١)

ابری سرویس های رتبه بندی .٣
وزن که است این هدف مثال ͷی عنوان به و بخش این در است. آنلاین صورت به مشتری با ارتباط مدیریت ابری، سرویس کاربردهای از
ابری خدمات دهنده ارائه شرکت های بین از و شود محاسبه شانون آنتروپی روش با اعتبار) و هزینه خدمات، کیفیت  (امنیت، معیار هر
SoftLayer، و GoGrid ،Linode ،City Cloud ،Century Link ،Google ،Rackspace ،Microsoft ،Hp Amazon مانند
به بنا داده ها نبودن دسترس در دلیل به شود. انتخاب و رتبه بندی ،TOPSIS روش با مشتری با ارتباط سیستم برای ابری سرور بهترین
شده اند تولید ١ جدول در تصادفͬ صورت به X تصمیم ماتریس داده های تمامͬ ابری، سرویس های دهنده ارائه شرکت های سیاست های
معیار های وزن ͬ آید. م به دست است، آمده ٢ جدول در که W

′ وزن دار ماترس (١٠) و (۴) روابط و شده تولید داده های اساس بر و
شباهت شاخص محاسبه با است. با برابر است آمده به دست شانون آنتروپی روش از استفاده با که اعتبار و هزینه خدمات، کیفیت  امنیت،

است. آمده ٣ جدول در نتایج که ͬ شوند م رتبه بندی (١١)،گزینه ها رابطه اساس بر

نتیجه گیری
مختلف معیارهای وجود ابری، سرویس های ارائه دهنده شرکت های مختلف خدمات از کاربران روزافزون استفاده و نیاز به توجه با
به توجه با مناسب شرکت انتخاب خصوص در چالش هایی با کاربران شرکت ها، این میان از ارجح گزینه انتخاب برای تصمیم گیری
معیارها کاربران، سوی از مناسب ابری سرویس انتخاب از قبل شانون، آنتروپی روش از استفاده با پژوهش این در دارند. قرار خود اهداف
توجه با رو این  از ͬ گردند. م رتبه بندی ابری سرویس های TOPSIS روش به کارگیری با سپس ͬ گیرند. م قرار مقایسه مورد و وزن دهͬ
دارد، دیͽر روش  های به نسبت بالاتری دقت TOPSIS و شانون آنتروپی روش ترکیب کاربران، نظر مورد شاخص های و ͬ ها ویژگ به

ͬ دهد. م قرار ابری سرویس های از کننده استفاده کاربران اختیار در را انتخاب بهترینگزینه بنابراین
ͬ شود. م سیستم در بهبود باعث آن افزایش که است معیاری مثبت، ۵معیار
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ابری سرویس های بندی رتبه و انتخاب در Topsis روش

اولیه آمده بدست داده های :١ جدول
اعتبار هزینه خدمات کیفیت امنیت ابری دهنده ارائه سرویس های

٠٫٢٣٣ ٢ ٠٫٠٢۵ ٠٫٨۵٣ Amazon
٠٫٢٣٠ ٩ ٠٫۵۴١ ٠٫۴٣٢ HP
٠٫٢١٨ ١ ٠٫٩٣٩ ٠٫٧۶٢ Microsoft
٠٫۴۵٩ ۴ ٠٫٣٨١ ٠٫١٣٧ Rackspace
٠٫٢٨٩ ١ ٠٫٢١۶ ٠٫۴۴۵ Google
٠٫٢١١ ٧ ٠٫۴۴٢ ٠٫٧٢١ CenturyLink
٠٫٨٣٧ ٧ ٠٫٠٢٩ ٠٫٢٢٨ CityCloud
٠٫۵۵۶ ٧ ٠٫٢٢١ ٠٫٩۴۵ Linode
٠٫۶۴٢ ١٠ ٠٫۴٣٧ ٠٫٩٠١ Gogrid
٠٫١٨۵ ۶ ٠٫۴٩۵ ٠٫٣٠۵ SoftLayer

منفͬ و مثبت معیارهای و W ′ ماتریس :٢ جدول
d−i d+i اعتبار هزینه خدمات کیفیت امنیت ابری دهنده ارائه سرویس های

٠٫١٢۴۶ ٠٫٢۴۶۶ ٠٫٠٣٢٣ ٠٫٠٢۶۵ ٠٫٠٠۶٣ ٠٫٠٧٧۵ Amazon
٠٫١٣۴١ ٠٫١٧۵١ ٠٫٠٣١٩ ٠٫١١٩٣ ٠٫١٣۶٩ ٠٫٠٣٩٣ HP
٠٫٢۶۶۵ ٠٫٠٨٧۵ ٠٫٠٣٠٢ ٠٫٠١٣٣ ٠٫٢٣٧٧ ٠٫٠۶٩٣ Microsoft
٠٫١٢۶٠ ٠٫١٧٢٣ ٠٫٠۶٣٧ ٠٫٠۵٣٠ ٠٫٠٩۶۴ ٠٫٠١٢۴ Rackspace
٠٫١٣٢۴ ٠٫٢٠٣٣ ٠٫٠۴٠١ ٠٫٠١٣٣ ٠٫٠۵۴٧ ٠٫٠۴٠۴ Google
٠٫١٢۴٧ ٠٫١٧٣۵ ٠٫٠٢٩٣ ٠٫٠٩٢٨ ٠٫١١١٩ ٠٫٠۶۵۵ CenturyLink
٠٫٠٩٩١ ٠٫٢۵٢٢ ٠٫١١۶١ ٠٫٠٩٢٨ ٠٫٠٠٧۴ ٠٫٠٢٠٧ CityCloud
٠٫١٠٩٩ ٠٫٢٠٢٢ ٠٫٠٧٧١ ٠٫٠٩٢٨ ٠٫٠۵۵٩ ٠٫٠٨۵٩ Linode
٠٫١۴٠۵ ٠٫١٧۶۴ ٠٫٠٨٩١ ٠٫١٣٢۵ ٠٫١١٠۶ ٠٫٠٨١٩ Gogrid
٠٫١٣١٢ ٠٫١۶٩٠ ٠٫٠٢۵٧ ٠٫٠٧٩۵ ٠٫١٢۵٣ ٠٫٠٢٧٧ SoftLayer

٠٫١١۶١ ٠٫٠١٣٣ ٠٫٢٣٧٧ ٠٫٠٨۵٩ مثبت معیار
٠٫٠٢۵٧ ٠٫١٣٢۵ ٠٫٠٠۶٣ ٠٫٠١٢۴ منفͬ معیار

ابری دهنده ارائه سرویس های نهایی رتبه :٣ جدول
رتبه نهاییگزینه ها رتبه ابری دهنده ارائه سرویس های
٩ ٠٫٣٣۵٧ Amazon
۴ ٠٫۴٣٣٧ HP
١ ٠٫٧۵٢٨ Microsoft
۵ ٠٫۴٢٢۴ Rackspace
٧ ٠٫٣٩۴۴ Google
۶ ٠٫۴١٨٢ CenturyLink

١٠ ٠٫٢٨٢١ CityCloud
٨ ٠٫٣۵٢١ Linode
٢ ٠٫۴۴٣۴ Gogrid
٣ ٠٫۴٣٧٠ SoftLayer

مراجع

چهارمین ابری، سرویس های انتخاب برای معیاره چند بهینه سازی رویͺرد از استفاده جعفرزاده. م. و زعفرانیه م. رضوی، شاه بخش ا. [١]
.(١۴٠٠) بهینه سازی کنترل ملͬ سمینار
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

اطلاعات بهره ی و اصلͬ مولفه تحلیل ترکیبی روش ͷکم به ویژگͬ انتخاب

ͬ خانͬ عل نگین

تأثیر زائد ͬ های ویژگ زیرا ͬ شود م محسوب داده کاوی و داده ها طبقه بندی هنگام چالش  ͬ ترین اصل از داده مجموعه در بالا ابعاد چͺیده.
اطلاعات بهره از استفاده با ترکیبی مدلͬ ابعاد کاهش جهت پژوهش این در بنابراین دارد. طبقه بندی الͽوریتم های عملͺرد نحوه بر منفͬ
نهایت در و ͬ گیرد م صورت تصادفͬ جنگل و تصمیم درخت اساس بر پژوهش این مدل سازی ͬ شود. م پیشنهاد اصلͬ مولفه تحلیل و
به ابعاد کاهش و زائد ͬ های ویژگ حذف که است آن از حاکͬ مدل سازی نتایج ͬ گیرند. م قرار ارزیابی مورد پارامتر چهار به نسبت مدل ها

ͬ شود. م الͽوریتم اجرای زمان کاهش و مدل کارایی بهبود سبب ترکیبی صورت

پیش گفتار .١
ͬ باشد. م ٢ ماشین یادگیری و ١ داده کاوی علوم در ضروری امر ͷی ابعاد کاهش بالا، ابعاد با داده ها گسترش و داده ها حجم افزایش با
را صریح برنامه ریزی بدون تجربه بهبود و خودکار یادگیری توانایی سیستم ها به و است مصنوعͬ هوش از شاخه ای ͷی ماشین یادگیری
بخش دو به ماشین یادگیری روش های .[١] کنند استفاده خود یادگیری برای آن از و داشته دسترسͬ داده ها به ͬ توانند م عبارتͬ به ͬ دهد. م

.[۶] برچسب) بدون (داده های ۴ ناظر بدون یادگیری و ( برچسب دار  (داده های ٣ باناظر یادگیری ͬ شوند، م تقسیم
هم با را مرتبط زمینه های سایر و داده پایͽاه ماشین، یادگیری آمار، چون مختلفͬ شاخه های و ͬ باشد م رشته ای میان حوزه ͷی داده کاوی
مدل های و الͽوها یافتن داده کاوی هدف نماید. استخراج را داده ها از بزرگͬ حجم در نهفته روابط و ارزشمند دانش تا است تلفیقکرده

.[٣] هستند پنهان داده ها از عظیمͬ حجم میان در که است داده ها پایͽاه در موجود جدید و ناشناخته
ͬ شود. م ارزیابی معیارهای کاهش و محاسباتͬ هزینه افزایش مدل ها، سرعت کاهش چون مشͺلاتͬ سبب داده ها بالای ابعاد امروزه
ویژگͬ استخراج و ویژگͬ انتخاب رویͺرد دو اساس بر ابعاد کاهش برای نوین ترکیبی رویͺرد ͷی بررسͬ پژوهش، این انجام از هدف
به زیادی، خارجͬ و داخلͬ پژوهشͽران شد. خواهد بی تاثیر متغیرهای حذف و تاثیرگذار و مهم متغیرهای انتخاب به منجر که است

ͬ شود. م اشاره آن ها از برخͬ به که پرداخته اند مهم و تاثیرگذار ͬ های ویژگ شناسایی و ابعاد کاهش
پژوهش این در صورتگرفت. آن ها بین مقایسه ای و پرداختند ویژگͬ انتخاب به مختلف روش های ͷکم به (٢٠٢١) ۵ ریو و لابردا
جهت پیشرو روش های از پژوهش، این محققان شد. استفاده غیره و دسته بندی و رگرسیون درخت همبستگͬ، ضریب چون روش هایی از
کاهش را داده ابعاد اطلاعات، بهره و اصلͬ مولفه های تحلیل ترکیبی مدل که ͬ دهد م نشان پژوهش این نتایج بهرهگرفتند. ویژگͬ انتخاب

اصلͬ. مولفه تحلیل اطلاعات، بهره ویژگͬ، انتخاب طبقه بندی، کلیدی: واژه های
.62H25, 62P05, 83A05 :[٢٠١٠] موضوعͬ طبقه بندی

1Data Mining
2Machine Learning
3Supervised Learning
4Unsupervised Learning
5Laborda and Ryoo
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اطلاعات بهره ی و اصلͬ مولفه تحلیل ترکیبی روش با ویژگͬ انتخاب

دقت های و بود همراه افزایش با مدل عملͺرد نتیجه در ͬ شود. م آموزش زمان کاهش سبب و انتخابکرده را مناسب ͬ های ویژگ داده،
.[۴] شد حاصل ٩٧/۶٢ و ٩٧/٧٠

بالا، بعد با داده های در ویژگͬ انتخاب برای جمعͬ خرد رویͺردهای از استفاده با ترکیبی روش ͷی (١٣٩۶) نظام  آبادی و روحͬ
رویͺرد از استفاده با پیچشͬ روزآمد الͽوریتم دو سپس و نمودند استفاده داده بعد کاهش برای فیلتر روش ͷی از ابتدا محققان دادند. ارائه
حاکͬ پژوهش این از آمده دست به نتایح پرداختند. نتایج ترکیب به نهایت در و اعمالکردند یافته کاهش ͬ های ویژگ روی بر جمعͬ خرد

.[١] است شده ارائه روش های سایر به نسبت پیشنهادی روش برتری از

نظری مبانͬ .٢

پیاده سازی عددی و اسمͬ داده های روی را آن ͬ توان م که ͬ گیرد م قرار باناظر الͽوریتم های دسته در تصمیم درخت مدل تصمیم: درخت
درخت آن به ͬ سازد، م مانند درخت ساختار و ͬ دهد م گسترش را بیشتری شاخه های که ͬ شود م شروع ریشه باگره درخت، مانند چون کرد.
ͬ دهند. م نشان را نتیجه خروجͬ برگ ها و تصمیم قوانین شاخه ها داده، مجموعه ͬ های ویژگ داخلͬ مدلگره های این در ͬ گویند. م تصمیم
استفاده تصمیم گیری و شاخه زدن برای تقسیم گره های از دارد. وجود برگ گره و تقسیم گره یعنͬ گره، نوع دو تصمیم، درخت ͷی در
بر تصمیمات این که بود نخواهند بیشتری شاخه های شامل و تصمیمات اند و شاخه ها این خروجͬ برگ، گره های که حالͬ در ͬ شود م

.[٧] ͬ گیرند م صورت داده مجموعه ͬ های ویژگ مبنای
روش مدل این در است. باناظر روش های از و ͬ آید م وجود به تصمیم درخت چندین ترکیب از تصادفͬ جنگل الͽوریتم تصادفͬ: جنگل
اساس بر ابتدا تصادفͬ جنگل الͽوریتم در ͬ شود. م اجرا ͬ دهند، م جنگل تشͺیل که تصمیم درختان از گروهͬ روی بر ۶ بوت استرپ
معیار ͷی سپس ͬ گیرد. م تعلق داده بوت استرپ روش اساس بر درخت هر به و ͬ شود م تشͺیل درخت چندین استرپ بوت ایده و داده ها
در و ͬ شوند م داده آموزش مختلفͬ درختان سپس ͬ شود. م نظرگرفته در درختان همه ی برای داده ها تقسیم بندی و زدن شاخه برای ثابت

ͬ شود. م انتخاب نهایی دسته بند عنوان به و ͬ شود م رای گیری شده داده آموزش درختان بین نهایت
باشند. مفید مدل ͷی ایجاد برای داده مجموعه متغیرهای همه که است نادر تقریباً ماشین، یادگیری مدل ͷی ایجاد هنگام ویژگͬ: انتخاب
ویژگͬ انتخاب ͬ دهند. م افزایش را مدل کلͬ پیچیدگͬ و کاهش را دسته بند کلͬ دقت و مدل تعمیم قابلیت اضافͬ متغیرهای افزودن
و تعمیم پذیری افزایش اطمینان، قابلیت افزایش برای است. پیش پردازش مرحله در مدل ها ماهرانه ساخت برای مهم و اساسͬ گام ͷی

ͬ شود. م استفاده پژوهش این در ویژگͬ انتخاب تکنیͷ های از حد، از بیش آموزش از جلوگیری
حجم کاهش به ͷتکنی این شده اند. تبدیل فرآیندها از بسیاری در آشͺار نیاز ͷی به ویژگͬ استخراج تکنیͷ های ویژگͬ: استخراج
گام های و یادگیری سرعت همچنین و ͬ کند م ͷکم کمتر محاسباتͬ هزینه ی با مدل ایجاد و داده ها مجموعه از غیرضروری داده های
اصلͬ، ویژگͬ فضای روی بر غیرخطͬ یا خطͬ تبدیل ͷی ͷکم به رویͺرد این در ͬ دهد. م افزایش را ماشین یادگیری فرآیند در تعمیم

ͬ آید. م وجود به جدید ͬ های ویژگ
است. ناظر بدون الͽوریتم ͷی و ͬ رود م کار به ͬ ها ویژگ استخراج برای که است الͽوریتمͬ اصلͬ مولفه های تحلیل اصلͬ: مولفه تحلیل
همان ویژه خط آن برود، دست از کمتری اطلاعات و شوند تصویر آن بر داده ها است قرار که ͬ باشد م خطͬ تعیین هدف الͽوریتم این در
بی ربط و بی ارزش ͬ های ویژگ روش این است. ماتریسکواریانس ویژه ی مقدار بزرگ ترین با متناظر که است اصلͬ مولفه های تحلیل خط
اطلاعاتͬ نظر از و دارد بیشتری پراکندگͬ و واریانس که جهت هایی یعنͬ ͬ شود م انجام داده ها واریانس وسیله به کار این ͬ کند، م حذف را

.[۵] ͬ کند م حذف را بقیه و ͬ کند م شناسایی را هستند ارزش تر با و مهم تر
ساده روش این ͬ های ویژگ از ͬ کند. م عمل دسته بند از مستقل که است ویژگͬ انتخاب روش های از ͬͺی اطلاعات بهره اطلاعات: بهره
با را متغیر ͷی برای قطعیت عدم کاهش و ͬ شود م محاسبه تصادفͬ متغیر دو بین اطلاعات بهره است. آن بالای عمل سرعت و بودن
ͷی مشاهده با تصادفͬ متغیر ͷی از ͬ تواند م اطلاعات چقدر که ͬ دهد م نشان بعلاوه و ͬ کند م اندازه گیری دیͽر متغیر مشخص ارزش
صورت این در هستند مستقل تصادفͬ متغیر دو که است معنͬ این به باشد، صفر اطلاعات بهره اگر آید. دست به دیͽر تصادفͬ متغیر

6Bootstrap
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ͬ خانͬ عل ن.

ͬ دهد. نم اطلاعاتͬ دیͽر متغیر درباره متغیرهای از ͷی هیچ 
دنبال به و هستند روبه رو بالا ابعاد با داده های با داده کاوی و ماشین یادگیری مباحث در پژوهشͽران از بسیاری امروزه داده ها: بالای ابعاد
و سریع پردازش به قادر الͽوریتم ها که ͬ شود م سبب داده ها بالای ابعاد ͬ باشند. م خود مدل با متناسب متغیرهای و ͬ ها ویژگ شناسایی
این که است زائد و نامناسب ͬ های ویژگ حذف و مناسب ͬ های ویژگ شناسایی ابعاد کاهش الͽوریتم های هدف نباشند. داده ها مناسب

.[٢] ͬ شود م آن ساخت زمان کاهش و مدل ͷی دقت و سرعت افزایش سبب امر

اصلͬ نتایج .٣
از و ترکیبی صورت به اطلاعات بهره و اصلͬ مولفه های تحلیل روش های ابعاد کاهش و داده ها پیش پردازش برای پژوهش این در
در ͬ شوند. م بررسͬ دیدگاه چهار در مدل ها کلͬ طور به ͬ شود. م استفاده مدل ساخت برای تصادفͬ جنگل و تصمیم درخت روش های
روی بر ابتدا دوم دیدگاه در ͬ شود. نم انجام ابعاد کاهش و ͬ شود م اجرا خام داده های روی بر تصادفͬ جنگل الͽوریتم ابتدا اول دیدگاه
سوم دیدگاه در ͬ شود. م اجرا داده ها روی بر تصادفͬ جنگل سپس ͬ شود م انجام ویژگͬ استخراج اصلͬ مولفه های تحلیل روش با داده ها
و چهارم دیدگاه در ͬ شود. م پیاده سازی داده ها روی بر تصادفͬ جنگل سپس ͬ شود م انجام ویژگͬ انتخاب اطلاعات بهره ی روش با ابتدا
الͽوریتم سپس ͬ شود م انجام ویژگͬ انتخاب اطلاعات بهره ی روش با سپس ویژگͬ استخراج اصلͬ مولفه های تحلیل روش با ابتدا آخر
تصادفͬ جنگل الͽوریتم عملͺرد و ͬ شود م انجام دیدگاه ها بین مقایسه ای نهایت در ͬ شود. م پیاده سازی داده ها روی بر تصادفͬ جنگل

ͬ شود. م بررسͬ
سازی پیاده است، دسترس در ٧ UCR دانشͽاه سایت در که آلمانͬ بانک داده  مجموعه روی بر شده ارائه رویͺرد پژوهش این در
پارامتر چهار به نسبت و دیدگاه چهار در سپس و ͬ شوند م ساخته ابعاد کاهش بدون و داده ها کل اساس بر مدل ها ابتدا در ͬ شود. م
ماتریس ͷکم به ((EII) ١١ دوم نوع خطای و (EI) ١٠ اول نوع خطای ،(ACC) ٩ صحت ،(MCC) ٨ متیوز همبستگͬ (ضریب
سایر به نسبت قبولͬ قابل نتایج است، ترکیبی مدل ارائه که چهارم، دیدگاه که جایی آن از ͬ گیرند. م قرار ارزیابی مورد هم ریختگͬ در
ابعاد کاهش جهت ترکیبی روش و اول) (دیدگاه خام داده های روی بر مدل سازی، از حاصل نتایج ١ جدول در ͬ باشد، م دارا دیدگاه ها

است. شده آورده مدل، کارایی مقایسه جهت چهارم) (دیدگاه

چهارم و اول دیدگاه از حاصل نتایح :١ جدول
ارزیابی مدل های

EII EI MCC ACC مدل ها دیدگاه ها
٠/۵٠٨ ٠/١٠۶ ٠/۴٢۴ ٠/٧٧۵ تصادفͬ جنگل ٠/٧۴۵اول ٠/٠۶٣ ٠/٢۶٧ ٠/٧٣۵ تصمیم درخت

٠/۵٠٨ ٠/٠۶٣ ٠/۴٩٧ ٠/٨٠۵ تصادفͬ جنگل ٠/۴٩١چهارم ٠/١٢٠ ٠/۴١٧ ٠/٧٧٠ تصمیم درخت

پژوهش دست آورد های .۴
نیز چهارم دیدگاه در و است بوده بهتر تصمیم درخت از تصادفͬ جنگل مدل عملͺرد که ͬ شود م مشاهده اول دیدگاه در ١ جدول طبق
جنگل در دوم نوع خطای که ͬ شود م دیده ترکیبی مدل و ساده مدل یعنͬ دیدگاه، دو نتایج مقایسه با اما ͬ شود. م دیده مشابهͬ نتایج

7https://library.ucr.edu/research-services/databases
8Matthews correlation coefficient
9Accuracy

10Type I error
11Type II error
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اطلاعات بهره ی و اصلͬ مولفه تحلیل ترکیبی روش با ویژگͬ انتخاب

برای ارزیابی مدل های پارامترها سایر در ولͬ است کرده پیدا افزایش اندکͬ دوم نوع خطای نیز تصمیم درخت در و بوده ثابت تصادفͬ
ترکیبی صورت به بی ارزش ͬ های ویژگ حذف و ابعاد کاهش گفت ͬ توان م پس کرده اند. پیدا بهبود تصمیم درخت و تصادفͬ جنگل

ͬ شود. م مدل ها کارایی بهبود و دوم و اول نوع خطای کاهش سبب تقریبا
این ترکیب با است ویژگͬ استخراج و ابعاد کاهش برای قوی روش های جزو اصلͬ مولفه های تحلیل که آن جایی از کلͬ طور به
به ابعاد کاهش برای متفاوت پژوهش های وجود با ͬ آید. م وجود به ابعاد کاهش برای قوی ترکیبی الͽوریتم ͷی اطلاعات بهره با روش
که ترکیبی روش های از استفاده با پژوهش این در اما هستند برخوردار مناسب تری عملͺرد از روش ها کدام گفت ͬ توان نم قطعͬ طور
انتخاب برای قدرتمندی روش  دارند، غیرخطͬ و خطͬ روابط تشخیص همچنین و بالا ابعاد در ویژگͬ انتخاب در بالایی بسیار توانایی

ͬ شود. م الͽوریتم اجرای زمان کاهش و مناسب ͬ های ویژگ دقیق تر شناسایی سبب که است آمده وجود به تاثیرگذار و مهم ͬ های ویژگ

سپاس گزاری
دارم. را تشͺر کمال نموده اند یاری را من مقاله این تهیه در که کسانͬ تمامͬ و اساتید از

مراجع
مهندسͬ نشریه جمعͬ، خرد بر مبتنͬ بالا بعد با های داده برای تركیبی ویژگͬ انتخاب روش یك نظام آبادی پور، ح. و روحͬ الف. [١]

.٢٩۴ –٢٨٣ (١٣٩۶) ،١۵ دوره ایران، کامپیوتر مهندسͬ و برق
در مهم ͬ های ویژگ انتخاب برای ریج رگرسیون و همبستگͬ ضریب ترکیب کشͺوئیه، ͬ زاده اسماعیل ع. و افتخاری م. هلاکو، ف. [٢]

.٣١٩٢– ٣١٩٧ (١٣٩٠) ایران، برق مهندسͬ کنفرانس نوزدهمین ،SNP نوکلئوتیدی تک ͬ های شͺل چند اطلاعاتͬ بانک
[3] J. Han, J. Pei, M. Kamber, Data mining: concepts and techniques, Elsevier. 2011.
[4] J. Laborda, S. Ryoo, Feature Selection in a Credit Scoring Model. Mathematics, 9 (2021) 746.
[5] E.O. Omuya, G.O. Okeyo, M.W. Kimwele, Feature selection for classification using principal com-

ponent analysis and information gain. Expert Systems with Applications, 174 (2021) no. 114765.
[6] I. Pan, R.M. Lachlan, O.K. Matar, Data-centric Engineering: integrating simulation, machine learn-

ing and statistics. Challenges and opportunities, Chemical Engineering Science, 249 (2022) no. 117271.
[7] L. Zhou, Y.W. Si, H. Fujita, Predicting the listing statuses of Chinese-listed companies using decision

trees combined with an improved filter feature selection method, Knowledge-Based Systems, 128 (2017)
93–101.

ͬ خانͬ عل نگین
ایران بروجرد، بروجردی، الʓه آیت دانشͽاه پایه، علوم دانشͺده

negin.alikhani750406@gmail.com ایمیل: آدرس
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

شودر ͬͺموج های پایه از استفاده با پینلوف اول معادله حل برای عددی روش ͷی

زیدآبادی حامد عرفانیان، مجید

ولترا انتگرال معادله به آن تبدیل با پنیلوف اول معادله حل برای شودر های ͷموج مبنای بر عددی روش ͷی مقاله این در چͺیده.
جواب آنجاییͺه از است. شده اثبات باناخ ثابت نقطه قضیه از استفاده با روش همͽرایی و بالا کران ادامه در است. شده ارائه همرشین
ادامه در نیز تقریبی شͺل و نمودیم مقایسه روش چند با را آمده بدست تقریبی جواب است، نامعلوم تاکنون معادله این دقیق و تحلیلͬ

است. شده رسم

مقدمه .١
نسبت انتگرال معادلات که جا آن از و ͬ شوند، م ظاهر ای گسترده طور به ͷفیزی ریاضͬ و ریاضͬ مختلف های شاخه در انتگرال معادلات
و معمولͬ دیفرانسیل معادلات به مربوط مرزی مقدار و اولیه مقدار مسائل از بسیاری بنابراین ͬ باشد، م کارآمدتر دیفرانسیل معادلات به

ͬ نماییم. م حل طریق این از شوند تبدیل انتگرال معادلات به ͬ تواند م که را جزئͬ،

عددی حل روش .٢
دهیم. مͬ ارائه زیر پینلوف اول معادله حل برای عددی روش ͷی شودر های پایه و عملͽر ͷی از استفاده با مقاله این در

∂٢u
∂x٢ = ۶u٢ (x) + x, u(٠) = ٠, u′(٠) = ١, (١)

داشت خواهیم مساله در اولیه شرایط اعمال و xبه نسبت (١) معادله از گیری انتگرال بار دو با

u (x) = x+
١
۶x

٣ + ۶
∫ x

٠
(x− t)u٢(t)dt, (٢)

صورت این در گیریم، مͬ نظر در را T : (X, ||.||∞) → (X, ||.||∞) انتگرال عملͽر

(Tu)x = f(x) +

∫ x

٠
K(x, t)W (x, t)dt, (٣)

دو هر C([α, α + β]٢) باناخ فضای در {B∗
n}n≥١ شودر های پایه و C([α, α + β]) باناخ فضای در {b∗n}n≥١ شودر های پایه

بازه در t١ = α, t٢ = α+ β مجزای نقاط از متشͺل {tn}n≥١ متراکم دنباله ͷی دنبال به ما باشند. مͬ مشخص سوپنرم ͷی شامل
و انتخاب t١ = ٠, t٢ = ١ یعنͬ کنیم، مͬ استفاده C[٠, ١] باناخ فضای در شودر های پایه از مقاله این در باشیم. مͬ [α, α + β]

شودر. ͷموج پینلوف، معادله کلیدی: واژه های
.13D45, 39B42 :[٢٠١٠] موضوعͬ طبقه بندی
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پینلوف اول ادله

منظور این برای هستند. صحیحͬ اعداد k, n و ٠ ≤ k < ٢n که ti+١ =
٢k + ١
٢n+١ , i = ٢n + k + ١, رابطه از نیز دیͽر نقاط

بصورت را است {tj : ١ ≤ j ≤ n} مشخص نقاط در را bn(t) := ١ پیوسته ای تکه تابع bn ،n ≥ ١ که t ∈ [α, α + β] برای
کنیم مͬ تعریف زیر

bn(tn) = ١, bn(tk) = ٠, ∀k < n. (۴)

یͺسانͬ جواب دارای x ∈ C([α, α+β]) هر برای که {Pn}n≥١ دنباله این با متناظر عملͽر و {b∗n}n≥١ متعامد دو توابع دنباله برای
داریم ([١] ) منبع اساس بر لذا هستند.

b∗١(x) = x(t١), b∗n(x) = x(tn)−
n−١∑
k=١

b∗k(x)bk(tn), n ≥ ٢, (۵)

نگاشت ͷی C([α, α + β]٢) باناخ فضای در {bn}n≥٠ شودر های پایه ساخت برای .Pn(
∑

n≥١ Λnxn) =
∑n

k=١ Λkxk که
مͬ l عدد صحیح جزء دهنده نشان [l] که کنیم، مͬ تعریف τ = (τ١, τ٢) : N → N ∗N صورت به ([١] ) منبع اساس بر دوسویی

باشد.

τ(l) :=


(
√
l,
√
l), if [

√
l] =

√
l,

(l − [
√
l]٢, [

√
l] + ١), if ٠ < l − [

√
l]٢ ≤ [

√
l],

([
√
l] + ١, l − [

√
l]٢ − [

√
l]), if [

√
l] < l − [

√
l]٢,

(۶)

،{Bn}n≥٠ شودر های پایه بنابراین i < n, اگر ،bn(ti) = ١ و n ≥ ٠ برای bn(ti) = ٠ و t ∈ [a, b]) برای b٠(t) = ١ که
آنجائیͺه از شوند. مͬ تعریف Bn(t, s) := bi(t)bj(s) بصورت t, s ∈ [α, α+ β] هر برای ،τ(n) = (i, j) با n ∈ N هر برای
از جدید دنباله ͷی رو این از نیست. پذیر امͺان صریح صورت به {Tn(u٠)}n∈N دنباله ͷی تعیین ندارد، وجود انتگرال صریح جواب

داشت خواهیم لذا مͬگردند. تولید شودر های پایه از استفاده با و بازگشتͬ صورت به که کنیم مͬ تعریف {ui}i∈N مانند توابع

ui(x) := f(x) +

∫ x

٠
K(x, t)W (t, ui−١(t))dt. (٧)

دهیم بسط زیر صورت به شودر های پایه حسب بر را ψ(t, s) توانیم مͬ ψi−١(x, t) := K(x, t)W (t, ui−١(t)), دهیم قرار اگر
داریم درونیابی شرایط از استفاده با صورت این در باشد، متعامد تصویر ͷی Qm اگر ψ(x, t) = ∑∞

i=٠
∑∞

j=٠ kijbi(x)bj(t),

Qm(ψ(x, t)) =

m−١∑
i=٠

m−١∑
j=٠

kijbi(x)bj(t). (٨)

داشت خواهیم (٢) انتگرال معادله برای بنابراین

ui(x) := f(x) +

∫ x

٠
Qm(ψi−١(x, t))dt. (٩)

خطا تحلیل .٣
آوریم. مͬ دست به شده ارائه روش برای بالا یͷکران باناخ ثابت نقطه قضیه از استفاده با بخش این در

T
he

9t
h

Se
m

in
ar

on

Numerical Analysis and
its

A
pplications

٢٢۴



زیدآبادی ح. عرفانیان، م.

کران با تابعͬکراندار K : [٠, ٢[١ → R و L لیپشیتز ثابت با لیپشیتز و پیوسته Wتوابعͬ ∈ C٠])١, ١] × R) کنید فرض .١ لم
اگر و است، u مانند ثابت نقطه ͷی دارای (٣) توسط شده تعریف T عملͽر u٠ ∈ C([٠, ١]) هر برای صورت این در باشد. M

آنگاه q :=ML < ١

∥u− T i(u٠)∥∞ ≤ ∥T (u٠)− u٠∥∞ ×
∞∑
j=i

qj . (١٠)

لیپشیتز Wتابعͬ ∈ C([٠, ١]×R) و باشد C([٠, ١]) از مجموعه زیر ͷی {ui}i≥١ و ψi−١ ∈ C([٠, ٢[١) فرضکنید .١ قضیه
و باشد مͬ ٢ همͽرایی مرتبه دارای روش و هستند مثبتͬ اعداد j = ١, ٢, ..., i برای εj صورت این در باشند. دوم متغیر به نسبت

∥u− ui∥∞ ≤ ∥T (u٠)− u٠∥∞
∞∑
j=i

qj +
i∑

j=١
qi−jεj .

عددی مثالهای .۴
نماییم. مͬ مقایسه دیͽر روش چند با و نموده حل عددی صورت به دوم بخش در شده ارائه روش با را پنیلوف اول معادله بخش این در

است. شده رسم پنیلوف اول معادله تقریبی شͺل این بر علاوه
روش هموتوپی، روش محلͬ، هم روش چبیشف، های ای جمله چند های روش با را (٢) در شده بیان پنیلوف اول معادله .١ مثال

است. شده بیان زیر جدول در و نموده مقایسه آدومین

پنیلوف اول معادله برای آمده بدست تقریبی جواب :١ جدول
xi [٣] VIM [٢] MADM [٢] ADM Schauder

n = ۴ n = ۶ n = ٩ n = ۶
٠. ١ ١٠٠٢١۶ .٠ ١٠٠٢۶٠. ٠ ١٠٠٢١۵ .٠ ١٠٠٢١۶ .٠
٠. ٢ ٠. ٢٠٢١٣٩ ٠. ٢٠٢١٢٨ ٠. ٢٠٢١١٧ ٠. ٢٠٢١٣٩
٠. ٣ ٣٠٨۶٠. ٣٠ ٣٠٨۶٠. ٣٠ ٣٠٨۶٠. ٣٠ ٣٠٨۶٠. ٣٠
۴ .٠ ۴٢٣٩٨۶ .٠ ۴٢٣٩٨۵ .٠ ۴٢٣٩٨۶ .٠ ۴٢٣٩٨۶ .٠
۵ .٠ ۵۵۴٠. ٣٣٩ ۵۵۴٠. ٣٣٧ ۵۵۴٣٣۵ .٠ ۵۵۴٣۴٠. ٠
٠. ٧ ٠. ٨٩٩٢٢٩ ٠. ٨٩٩٢١٩ ٠. ٨٩٩٢١٧ ٠. ٨٩٩٢٨٩
٠. ٩ ۴١. ٨١٧٧٨ ۴٨١۴١. ٨٨ ۴١. ٨١٢٠١ ۴٨۴١. ٧٨٧

پنیلوف. معادله تقریبی های جواب :١ شͺل
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پینلوف اول ادله

مراجع
[1] Z. Semadeni, Product Schauder bases and approximation with nodes in spaces of continuous func-
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

لژاندر عمیق عصبی شبͺه از استفاده با فیشر معادله عددی حل

پرند کورش نائینͬ، آقائͬ افضل علیرضا بابائͬ، مریم

عمیق یادگیری های الͽوریتم اساس بر دیفرانسیل معادلات انواع حل جهت کارا عددی روش ͷی معرفͬ به مقاله این در چͺیده.
افزایش جهت فعالیت، توابع عنوان به متعامد چندجمله ای های از بهره گیری با (LDNN) لژاندر عمیق عصبی شبͺه معماری ͬ پردازیم. م
شبͺه های نسبت به شده ارائه مدل برتری بیانگر حاصله نتایج است. شده ارائه دیفرانسیل معادلات حل برای عصبی شبͺه یادگیری قابلیت

ͬ باشد. م (PINN) آگاه ͷفیزی عصبی

پیش گفتار .١
شبیه سازی را ͬͺبیولوژی موجودات در یادگیری مͺانیسم که است ماشین یادگیری روش های از زیر مجموعه ای مصنوعͬ عصبی شبͺه
یادگیری فرآیند شده اند. متصل هم به دار وزن یال های توسط (نورون ها) آن راس های که است جهت دار عصبی،گرافͬ شبͺه ͷی ͬ کند. م
عملیات و ١ جلوسو حرکت مرحله ی دو شامل تکرار هر در روال این ͬ باشد. مجهولگراف م وزن های یافتن شامل عصبی شبͺه ͷی در
توسط آمده بدست مقدار سپس ͬ گردد. م تولید خروجͬ و ͬ افتند م جریان به شبͺه در ورودی ها نخست مرحله ی در است. ٢ پس انتشار
تابع جزئͬ مشتق ͷکم به ابتدا خطا پس انتشار مرحله در ͬ گردد. م محاسبه شبͺه خطای میزان و ͬ شوند م مقایسه معتبر داده های با شبͺه

ͬ گردد. م به روزرسانͬ وگراف محاسبه بهینه های وزن بهینه ساز الͽوریتم ͷی ͷکم به سپس و شده محاسبه وزن هر خطای سهم ضرر،
تعداد مانند عواملͬ عصبی، شبͺه های معماری در است. شبͺه ها معماری طراحͬ عصبی، شبͺه های توسعه گام های از ͬͺی
و tanh(x) فعالیت توابع .[١] ͬ شوند م گرفته نظر در آموزش الͽوریتم و فعالیت توابع لایه، هر در نورون ها تعداد پنهان، لایه های

ͬ باشد. م معماری ها این در استفاده مورد توابع رایج ترین از relu(x) = max(٠, x)
معماری این داده اند. تعمیم جزئͬ مشتقات با دیفرانسیل معادلات عددی جواب تقریب جهت را مدل ها این [۴] همͺاران و رییسͬ
و معادلات حل به ۵ داده‐محور حل راه و ۴ داده‐محور اکتشاف اساس بر ͬ شود، م شناخته ٣ فیزیͷ‐آگاه عصبی شبͺه های نام به که

ͬ پردازد. م واقعͬ داده های ͷکم به مدل مجهول پارامتر های یافتن همچنین
مدل، در جدید فعالیت توابع عنوان به لژاندر متعامد توابع از استفاده و فیزیͷ‐آگاه عصبی شبͺه معماری توسعه با تحقیق این در
نسبت به فیشر واکنش‐انتشار معادله حل در معماری این دقت و صحت سپس ͬ دهیم. م توسعه را لژاندر عمیق عصبی شبͺه معماری

ͬ شوند. م بررسͬ ͷکلاسی معماری
عمیق. یادگیری دیفرانسیل،کووید‐ ١٩، معادلات کلیدی: واژه های

.92C60, 34A34, 68T20 :[٢٠١٠] موضوعͬ طبقه بندی
1Feedforward
2Backpropagation
3Physics-informed neural networks
4Data Driven Discovery
5Data Driven Solution
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لژاندر عمیق عصبی شبͺه از استفاده با فیشر معادله عددی حل

لژاندر متعامد چندجمله ای های .٢
تعریف [−١, ١] بازه ی در که توابع این عمودند. یͺدیͽر بر دو به دو که هاست چندجمله ای از کاملͬ سیستم لژاندر چندجمله ای های

تعریف اساس بر w(x) ≡ ١ وزن تابع به نسبت ͬ شوند، م

⟨f, g⟩w =

∫ b

a
f(x)g(x)w(x)dx,

صورت به که اشتورم‐لیوویل معادلات از ͬ توان م ها چندجمله ای این تعریف جهت دارند. تعامد خاصیت
d

dx
((١ − x٢) d

dx
Pn(x)) + λnPn(x) = ٠,

.[٣] استفادهکرد ͬ شوند، م بیان

لژاندر عصبی شبͺه .٣
عصبی شبͺه ͷی از ابتدا معماری این در ͬ آید. م بدست یͺدیͽر به متصل متوالͬ شبͺه دو ترکیب از استفاده با لژاندر عصبی شبͺه
چند این رفته اند. به کار فعال ساز توابع عنوان به لژاندر جمله ای های چند آن ابتدایی لایه در که شده است استفاده جلوسو چندلایه عمیق
به دیͽر لایه های در آن ها خروجͬ و ͬ شوند. م تولید شبͺه در [−١, ١] بازه ی در شده نرمال ورودی های برای پویا صورت به جمله ای ها
جواب ها ویژگͬ بتوانیم طیفͬ، قدرتمند روش از استفاده بر علاوه ͬ شود م باعث لایه ها این ترکیب ͬ شود. م داده tanh(x) فعال ساز تابع

ͬ شود: م تعریف زیر صورت به لایه n با اول شبͺه صورت این در .[٢] نباشیم جمله ای ها چند به محدود و ببریم بالاتر ابعاد به نیز را
H٠ = x, x ∈ Rd,

H١ = P (W (١)H٠ + b(١)),

Hi = tanh(W (i)Hi−١ + b(i)), i = ٢, ٣, . . . n− ١,
Hn = W (n)Hn−١ + b(n).

لایه های ٢ ≤ i ≤ n − ١,Hi و لژاندر جمله ای های چند فعالیت های تابع با ابتدایی لایه ی H١ ، d بعد با ورودی لایه H٠ آن در که
است. ͷهایپربولی تانژانت فعالیت تابع با پنهان

مقدار محاسبه ی به شبͺه این شده اند. تشͺیل آن ها توابع ترکیب و مشتق عملیاتͬ ازگره های استفاده با معماری این دوم شبͺه های
ثانویه زمان در مرزی شرایط در تابع مقدار همچنین و قبل شبͺه خروجͬ و متناهͬ تفاضل روش از استفاده با اولیه گام در هدف تابع

ͬ شود: م محاسبه زیر صورت به متناهͬ تفاضل روش به توجه با دوم شبͺه خروجͬ ͬ پردازد. م
ut +N(u) = ٠, (١)

u١ − u٠
∆t

+N(u١) = ٠, (٢)
h := u٠ = u١ +∆tN(u١), (٣)

ͬ شود: م تعریف زیر صورت به مدل این در ضرر تابع بنابراین
Loss = MSEh +MSEBC .

مرزی و اولیه شرایط برای باقیمانده تابع خطا مربعات میانگین MSEBC و h − u٠ مقدار خطا مربعات میانگین MSEh اینجا در
شبه نیوتنͬ بهینه ساز و Adam اول مرتبه الͽوریتم توسط ضرر تابع معادله، جواب از مناسب تقریب ͷی آوردن بدست جهت ͬ باشد. م

ͬ دهد. م نشان کلͬ صورت به را شبͺه این ساختار (١) شͺل ͬ رود. م پیش کمینه مقدار سمت به L-BFGS-B
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پرند ک. آقائͬ، افضل ع. بابائͬ، م.

فیشر معادلات حل برای لژاندر عصبی شبͺه معماری :١ شͺل

PINN. و LDNN شبͺه های در نتایج مقایسه جدول :١ جدول
LDNN مدل خطای PINN مدل خطای مثال شماره

٢٫٩ × ١٠−۵ ۶ × ١٠−۵ ١
۵ × ١٠−۴ ٧٫۵ × ١٠−۴ ٢

نتایج و شبیه سازی .۴
نمونه مدل نیز و ͬͺژنتی تکثیر تصادفͬ، فرایندهای جمعیت، پویایی شناسͬ در که است انتشار واکنش پرکاربرد معادلات از فیشر معادله
معادلات از اینگروه غیرخطͬ حالت ͷی و ششم مرتبه معادله حل به مقاله این در دارد. کاربرد ... و گسترش حال در شعله برای اولیه

ͬ پردازیم. م
ͬ آید م بدست زیر معادله ی β = ۶ و α = ١ نظرگرفتن در با فیشر) ششم مرتبه (معادله .١ مثال

ut = uxx + u(١ − u۶), u(x, ٠) = ١
١)√٣ + e(٣/٢)x)

. (۴)

فرم به توجه با ͬ باشد. م u(x, t) = {١/٢ tanh[−٣/۴(x − ۵/٢t)] + ١/٣{١/٢ فرم به قطعͬ دقیق جواب دارای معادله این که
تخمین t٢ = ٠٫٩ زمان در هدف تابع مقدار پیشنهادی عصبی شبͺه بͺارگیری با t١ = ٠٫١ اولیه نقاط در تابع مقدار داشتن و معادله

شده است. زده
است زیر صورت به فیشر غیرخطͬ معادله کلͬ فرم فیشر) غیرخطͬ (معادله .٢ مثال

ut = uxx + u(١ − u)(u− a), ٠ < a < ١, u(x, ٠) = ١
١ + e(−٢√/١)x . (۵)

فرم به قطعͬ دقیق جواب دارای معادله این که

u(x, t) =
١

(١ + e−x/
√٢−(١/٢−a)t)

,

شده زده تخمین t٢ = ٠٫٩ نقطه ی در هدف تابع مقدار t١ = ٠٫١ نقطه ی در هدف تابع مقدار و a = ٠٫٣ نظرگرفتن در با ͬ باشد. م
 است.
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لژاندر عمیق عصبی شبͺه از استفاده با فیشر معادله عددی حل
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.٢ مثال (ب) و ١ مثال (آ) برای آمده بدست تقریبی جواب و تحلیلͬ جواب مقایسه :٢ شͺل
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

روش های دقت افزایش جهت اصلͬ مولفه های تحلیل در لژاندر متعامد توابع کاربرد
ماشین یادگیری

حجاریان مسعود پرند، کوروش نائینͬ، آقائͬ افضل علیرضا بهروزه، زهرا

این ͬ گیرند. م قرار استفاده مورد هسته بر مبتنͬ اصلͬ مولفه های تحلیل روش در کسری لژاندر متعامد توابع پژوهش این در چͺیده.
توسط شده ارائه مدل دقت ͬ دهد. م انجام را داده ابعاد کاهش فرآیند ویژه مقادیر تجزیه ͷکم به ویژگͬ، نگاشت اعمال از پس الͽوریتم
هسته توابع برابر در شده ارائه روش بالای دقت بیانگر حاصله نتایج و شده بررسͬ داده مجموعه چند روی بر ͷلاجستی و خطͬ رگرسیون

ͬ باشد. م رایج

پیش گفتار .١
مدل های دانشمندان رو این از است. حوزه این دانشمندان اهداف ͬ ترین اصل از ماشین یادگیری مدل های در یادگیری توانایی افزایش
سادگͬ ͬ رغم عل خطͬ، مدل های داده اند. توسعه را عصبی شبͺه و پشتیبان بردار ماشین ،ͷلاجستی و خطͬ رگرسیون همچون مختلفͬ
ارائه مشͺل این بر غلبه جهت هسته بر مبتنͬ روش های ندارند. را داده ها فضای در غیرخطͬ پیچیده الͽوهای یادگیری توانایی آموزش،
با کار هنگام ͬ شوند. م ارائه اصلͬ مولفه های تحلیل روش هسته توابع عنوان به کسری لژاندر چندجمله ای های پژوهش این در اند. شده
بعدچندی مشقت نام به پدیده ای و حافظه از زیادی بخش درگیری محاسبه، زمان افزایش مانند: زیادی مشͺلات دچار بالا ابعاد داده های
موجود داده های که ͬ یابد م افزایش سریع گونه ای به  فضا حجم ابعاد، حجم شدن بیشتر با که ͬ باشد م معنا این به پدیده شد.این خواهیم
ویژگͬ انتخاب و ویژگͬ استخراج نام های با داده ابعاد کاهش روش های مشͺل این اثر کاهش برای دانشمندان ͬ شوند. م تُنُک و پراکنده
مقادیر تجزیه از استفاده با الͽوریتم، این است. ویژگͬ استخراج روش های پرکاربردترین از اصلͬ مولفه های تحلیل نمودند. معرفͬ را

ͬ پردازیم. م روش این توضیح به ادامه در ͬ کند. م استخراج را داده ها پنهان ͬ های ویژگ پراهمیت ترین ،[٢] ویژه

اصلͬ مولفه های تحلیل .١. ١
جهت های یافتن با روش این [۴] شود. تولید جدیدی ͬ های ویژگ موجود، ͬ های ویژگ خطͬ ترکیب ͷکم به ͬ شود م تلاش رویͺرد این در
واریانس، بیشترین جهت با متناظر بˀعد اولین جدید دستگاه این در ͬ کند. م ارائه جدید مختصات دستگاه ͷی داده ها، در واریانس بیشترین
انتخاب با رو این از است. داده ها میان در واریانس کمترین جهت بیانگر بˀعد اخرین و واریانس بیشترین دومین جهت با متناظر بˀعد دومین
ͬ پردازیم. م الͽوریتم این دقیق بیان به زیر قضیه در آورد. بدست مفیدی و شده استخراج های ویژگͬ ͬ توان م دستگاه این ابتدای بˀعد k

واریانس بیشترین جهت های صورت این در است. شده داده صفر ستونͬ میانگین با n×d ابعاد با X داده مجموعه کنید فرض .١ قضیه
ͬ شود. م ارائه ماتریسکواریانس ویژه بردارهای توسط داده ها، بردارهای
ابعاد. کاهش کسری، لژاندر توابع اصلͬ، مولفه های تحلیل کلیدی: واژه های

.15A23, 68T10 :[٢٠١٠] موضوعͬ طبقه بندی
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ماشین یادگیری روش های دقت افزایش جهت اصلͬ مولفه های تحلیل در لژاندر متعامد توابع کاربرد

صورت به ماتریسکواریانس داده، مجموعه ͬ های ویژگ میانگین بودن صفر فرض با اثبات.

C =
١
n

n∑
i=٠

xix
T
i , (١)

زیر بهینه سازی مسئله بردار این یافتن برای دهد. نمایش را ها داده واریانس بیشترین جهت u١ بردار کنید فرض شد. خواهد داده نمایش
ͬ دهیم: م تشͺیل را

max
u١

١
nu

T١ Cu١
s.t. ∥u١∥ = ١.

(٢)

ͬ دهد: م نتیجه را زیر ویژه ی مقدار مسئله ٢ دوگان فرم محاسبه

C · u١ = λ · u١. (٣)

ͬ شوند. م انتخاب ماتریسکورایانس از آن متناظر ویژه بردارهای و ویژه مقدار بزرگترین واریانس، بیشترین جهت محاسبه برای بنابراین
ͬ گردد. م محاسبه ویژه مقدار بزرگترین دومین واریانس، بیشترین جهت دومین یافتن منظور به

بررسͬ بالاتر ابعاد با درفضای را داده مجموعه که است صورت این به کلͬ ایده هسته بر مبنتͬ اصلͬ مولفه های تحلیل روش در
نگاشت را آن و ͬ دهد م انتقال بالاتر ابعاد با فضای به را داده مجموعه که است نگاشتͬ همان ϕ خطͬ غیر نگاشت کنید فرض ͬ کنیم. م
داده مجموعه داخلͬ ضرب که ͬ کنیم م معرفͬ تابعͬ عنوان به را هسته حال ͬ شود. م تعریف x → ϕ(x) صورت به که ͬ نامیم م ویژگͬ

ͬ نماید: م محاسبه ϕرا نگاشت تحت را
K(xi, xj) = ϕ(xi)ϕ(xi)

T .

مقادیر تجزیه صورت این در کنیم. استفاده هسته ماتریس از شد، بیان اصلͬ مولفه های تحلیل در که فرمولکوواریانس، در است کافͬ
ͬ کنند. م محاسبه را جدید فضای در واریانس بیشترین های جهت ویژه،

C =
١
n

n∑
i

ϕ(xi)ϕ(xi)
T =

١
n

n∑
i

K(xi, xj).

.[٣] است محاسبه قابل هسته تابع توسط راحتͬ به نیز ویژگͬ فضای در داده ها میانگین بودن صفر شرط است ذکر به لازم

لژاندر متعامد چندجمله ای های .١. ٢
مسائل حل در دانشمندان توسط جالبشان ͬ های ویژگ علت به که متعامدند چندجمله ای های از کاملͬ سیستم لژاندر، چندجمله ای های

استفادهکرد: زیر فرمول از ͬ توان م توابع این تعریف جهت .[١] ͬ شوند م استفاده دیفرانسیل معادلات حل همچون ریاضیاتͬ

Pn(x) = ٢n
n∑

k=٠
xk

(
n

k

)(n+k−١
٢
n

)
.

ϕ(x) آن در که ͬ شود م استفاده P̃n(x) = Pn(ϕ(x)) نگاشت از [a, b] دلخواه ی بازه در توابع این تعریف جهت است ذکر به لازم
با: است برابر

ϕ(x) =
(٢x− a− b)

(b− a)
,
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حجاریان م. پرند، ک. آقائͬ، ع. بهروزه، ز.

کسری لژاندر متعامد توابع .١. ٣
کم رنگ برای دانشمندان داد. افزایش دلخواه اندازه به را چندجمله ای درجه ͬ توان نم افزاری، سخت و پیاده سازی محدودیت های علت به

نگاشت از استفاده با توابع این اند. پیشنهادکرده را کسری لژاندر توابع از استفاده مشͺل این کردن
ϕ(x) =

(٢xα − a− b)

(b− a)
,

ͬ شوند. م بیان [a, b] بازه ی در تعریف جهت
لژاندر متعامد چندجمله ای های تحقیق این در .[۵] ͬ باشد م ماشین یادگیری مدل های هسته عنوان به توابع، این کاربردهای از ͬͺی
مجموعه برای هسته تعریف طبق توابع این است. قرارگرفته استفاده مورد ماشین یادگیری مدل های تابع هسته عنوان به کسری یافته انتقال

ͬ شود: م فرموله بندی زیر صورت به ویژگͬ d با داده

K(x, t) =

d∏
i=١

K (xi, ti) =

d∏
i=١

q∑
j=◦

Pj (xi)Pj (ti) . (۴)

نتایج و پیشنهادی مدل .٢
ͬ پردازیم. م شده شناخته داده مجموعه چند روی بر پیشنهادی الͽوریتم بررسͬ به پیشنهادی، مدل و داده مجموعه معرفͬ با بخش این در

داده ها مجموعه .٢. ١
مجموعه است. شده داده قرار داده ها تعداد و ͬ ها ویژگ تعداد همراه به مقاله این در شده به کاربرده داده های مجموعه ٢ جدول در
رگرسیون مسائل در شده ارائه الͽوریتم بررسͬ جهت همچنین ͬ باشند. م چندکلاسه و کلاسه دو دسته بندی نوع از Iris و Aids داده های

شده اند. استفاده Triazines و Boston های مجموعه داده

پیشنهادی مدل .٢. ٢
ماتریس محاسبه و [٠, ١] بازه به داده ها مقیاس تغییر از پس الͽوریتم این است. شده آورده ١ شͺل در شده ارائه روش کلͬ الͽوریتم
و آموزش جهت ͷلاجستی و خطͬ رگرسیون از نیز نهایت در ͬ کند. م استفاده اصلͬ مولفه های تحلیل از کسری، لژاندر توابع توسط هسته
نموده حل خطͬ معادلات دستگاه ͷی ،y(x) = wTx+ b صورت به جواب مدل سازی با خطͬ رگرسیون ͬ نماید. م استفاده یادگیری
نظر در را زیر کمینه سازی مسئله کلاسه دو مسئله ͷی حل برای ͷلاجستی رگرسیون مقابل در ͬ کند. م محاسبه را w مجهول ضرایب و

ͬ گیرد: م

min
w,c

١
٢w

Tw + C

n∑
i=١

log(exp(−yi(X
T
i w + c)) + ١). (۵)

نتایج .٢. ٣
توابع از مقایسه، قابلیت جهت به همچنین است. شده بررسͬ و تست مختلف ٢ جدول داده مجموعه چهار روی بر شده ارائه الͽوریتم
اعتبار اساس بر نتایج این است. شده آورده تحقیق این نتایج ١ جدول در است. شده استفاده نیز معمولͬ چندجمله ای و خطͬ هسته
(Accuracy) پیش بینͬ دقت اساس بر بندی دسته مسائل برای جدول در شده معیارهایگزارش اند. شده Fold-3گزارش متقابل سنجͬ

صورت به که است (MSE) خطا مربعات میانگین رگرسیون برای و

MSE =
١
n

n∑
i=١

(yi − ŷi)
٢,
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ماشین یادگیری روش های دقت افزایش جهت اصلͬ مولفه های تحلیل در لژاندر متعامد توابع کاربرد

پیشنهادی الͽوریتم :١ شͺل

ویژگͬ تعداد داده ها تعداد داده مجموعه
۵ ۵٠ aids
۴ ١۵٠ iris

١٣ ۵٠۶ boston
۶١ ١٨۶ triazines

داده ها جدول :٢ جدول

boston triazines aids iris پارامتر هسته
١۶٩ ٠٣٣. ٠ ۶٧% ٩١% ‐ خطͬ

٨١۵٣۴٧ ٠ .۶٣٢ ۶١% ٩١% d = ٢ چندجمله ای
٣٢٧۶ ٠٣١. ٠ ۶٩% ٩۵% α = ٠٫٢۵ لژاندر
٢٠٨ ٠٢٧. ٠ ۶۵% ٩۶% α = ٠٫۵ لژاندر
٨٠ ٠٢٩. ٠ ۵٧% ٩۶% α = ١ لژاندر
٩۴ ٢ .۵٣٨ ۵۵% ٩٨% α = ١٫۵ لژاندر

نتایج جدول :١ جدول

داشته اند. چشمͽیری برتری ͷکلاسی توابع نسبت به حاصله نتایج ͬ شود م مشاهده ͬ گردد. م تعریف

مراجع
کاربردها، و نظریه علمͬ: محاسبات در طیفͬ روش های از نوین رویͺردهای معیری. م. دلخوش، م. راد، امانͬ ج. رزاقͬ، م. پرند، ک. [١]

.١٣٩٨ بهشتͬ، شهید دانشͽاه
.١٣٩٧ تهران، بهشتͬ، شهید انتشارات عددی، خطͬ جبر در درس نخستین حجاریان، م. [٢]

[3] W. Wu, D.L. Massart, S.D. Jong, The kernel PCA algorithms for wide data. Part I” Theory and
algorithms, Chemometrics and Intelligent Laboratory System, 36 (1997) 165–172.

[4] S. Wold, K. Esbensen, P. Geladi, Chemometrics and Intelligent Laboratory Systems, Principal com-
ponent analysis, 2 (1987) 37–52.

[5] K.Parand, A.A. Aghaei, M. Jani, A. Ghodsi, A new approach to the numerical solution of Fredholm
integral equations using least squares-support vector regression, Mathematics and Computers in Sim-
ulation, 180 (2021) 114–128.
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حجاریان م. پرند، ک. آقائͬ، ع. بهروزه، ز.
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

معین طیف برای بدیهͬ غیر متقارن ماتریس ساخت

خیز ͷسب مسعود زاده، زنگوئͬ سمیه

علوم زمینه در فراوانͬ کاربرد های دارای که ͬ باشد م عددی خطͬ جبر در پرکاربرد مسائل از ͬͺی معکوس ویژه مقدار مسئله چͺیده.
روشͬ ابتدا مقاله این در است. شده حل محدود شرایط و اندازه با خاص ماتریس های از برخͬ برای است. ... و ͷفیزی مهندسͬ،
مرتبه با است) بدیهͬ جواب ͷی اصلͬ قطر روی ویژه مقادیر مجموعه با قطری (ماتریس بدیهͬ غیر متقارن ماتریس های ساخت برای
عددی مثال دو روش این از استفاده با پایان در ͬ شود. م مطرح آمده، بدست متقارن ماتریس بودن نامنفͬ برای شرایطͬ و بیان دلخواه

ͬ شود. م ارائه

پیش گفتار .١
طیف و n = ٢ حالت برای را زیر ساده بسیار جواب و [١] پرداخت متقارن ماتریس های ویژه مقدار مسئله به فیدلر ١٩٧۴ سال در

داد: ارائه σ = {λ١, λ٢}

c =
١
٢
[
λ١ + λ٢ λ١ − λ٢
λ١ − λ٢ λ١ + λ٢

]
. (١)

تحت نیز σ = {λ١, λ٢, ..., λn} مجموعه ثابتکردند و استفاده n = ٢ حالت در فیدلر اندیشه از ملͺمن و فریدلند ١٩٧٩ سال در
ارائه متقارن، حالت در مسئله حل در مهم گام های از ͬͺی .[٢] باشد نامنفͬ و متقارن قطری سه ماتریس ͷی طیف ͬ تواند م شرایطͬ
بدست نامنفͬ ماتریس ͷی نامنفͬ ماتریس دو از طیف دو برای توانست او .[٣] شد پایه گذاری فیدلر توسط که بود ترکیبی جواب های
ͷی برای رو این از ͬ اند. حقیق ͬͽهم متقارن ماتریس ͷی ویژه مقادیر بود. شده تشͺیل مذکور طیف دو اجتماع از آن طیف که آورد
باشد. آن ویژه مقادیر شده داده مجموعه که است گونه ای به حقیقͬ و متقارن ماتریس ͷی ساخت هدف شده، داده یعنͬ حقیقͬ طیف
را متقارن ماتریس ساخت نحوه آ˜ن از استفاده با بعد بخش در و [۴] ͬ باشد م ‐شرافت نظری قضیه مشابه که مقاله این مهم نتایج از ͬͺی

است. زیر لم ͬ کنیم، م بیان

باشد. B ماکسیمال ویژه مقدار µ١ و ویژه مقادیر مجموعه σ١ = {µ١, µ٢, ..., µn} و m×m متقارن ماتریس B کنید فرض .١ لم
شͺل به n مرتبه از متقارن ماتریسͬ A اگر

A =

[
A١ a

bT µ١

]
(٢)

متقارن). ماتریس ماکسیمال، ویژه مقدار ماتریس، طیف معکوس، ویژه مقدار (مسئله کلیدی: واژه های
.65F30, 65F18 :[٢٠١٠] موضوعͬ طبقه بندی
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معین طیف برای بدیهͬ غیر متقارن ماتریس ساخت

ویژه مقادیر مجموعه σ٢ = {λ١, λ٢, ..., λn} و Cn−١ در بردارهایی a, b ، (n − ١) × (n − ١) ماتریسͬ A١ آن در که باشد
صورت به (m+ n− ١)× (m+ n− ١) بعد با متقارن ماتریس آن گاه باشد، A ماتریس

C =

[
A١ asT

sbT B

]
(٣)

µ١ ویژه مقدار با متناظر نرمال ویژه بردار s . است آن ویژه مقادیر مجموعه σ = {µ٢, ..., µm, λ١, λ٢, ..., λn} که دارد وجود
ͬ باشد. م

مشخص طیف های برای متقارن ماتریس ساخت .٢
ماتریس های برای ساختͬ روش و اثبات را قضیه (١) لم ͷکم به و استقرا از استفاده با سپس بیانکرده، را قضیه ͷی ابتدا بخش این در

ͬ دهیم. م ارائه متقارن

صورت این در λ١باشد. > λ٢ > · · · > λn شرط با حقیقͬ اعداد از مجموعه ای σ = {λ١, . . . , λn} کنید فرض .١ قضیه
است. آن ویژه مقادیر مجموعه σ طوری که به دارد وجود n مرتبه Aاز مانند بدیهͬ غیر متقارن ماتریس

ثابت را قضیه استقرا با A بدیهͬ غیر ماتریس برای است. قضیه بدیهͬ جواب ͷی اصلͬ قطر روی ویژه مقادیر با قطری ماتریس اثبات.
به صورت ٢ × ٢ متقارن ماتریس صورت این در n = ٢ کنیم فرض ͬ کنیم: م

A =

[
λ١+λ٢٢

λ١−λ٢٢
λ١−λ٢٢

λ١+λ٢٢

]
(۴)

ͬ دهیم م قرار و n = ٣ ͬ کنیم م فرض ͬ باشد. م λ١, λ٢ ویژه مقدار دو دارای و متقارن ماتریس این زیرا است. مسئله از جوابی
n = ٢ حالت طبق که σ٢ = {λ١+λ٢٢ , λ٣} ͬ دهیم م قرار حال باشد. (۴) ماتریس ویژه مقادیر مجموعه ͬ تواند م که σ١ = {λ١, λ٢}

صورت به B ماتریس ویژه مقادیر مجموعه

B =

 λ١+λ٢٢ +λ٣
٢

λ١+λ٢٢ −λ٣
٢

λ١+λ٢٢ −λ٣
٢

λ١+λ٢٢ +λ٣
٢

 (۵)

نتیجه ͬ توان م (١) لم از لذا است. B ماتریس ماکسیمال ویژه مقادیر λ١+λ٢٢ و ͬ باشند م متقارن ماتریس دو هر B و A چون است.
ماتریس که گرفت

C =

[
A١ asT

sbT B

]
, (۶)

فرض حال .A١ = λ١+λ٢٢ و b = λ١−λ٢٢ و a = λ١−λ٢٢ که ͬ باشد م σ = {λ١, λ٢, λ٣} ویژه مقادیر با ٣ مرتبه از متقارن ماتریسͬ
ͬ دهیم م قرار σ = {λ١, λ٢, ..., λn} ویژه مقادیر با n× n متقارن ماتریس ساختن برای باشد. برقرار n− ١ برای قضیه حͺم کنیم
همچنین دارد. وجود σ١ ویژه مقادیر مجموعه با n − ١ مرتبه از A متقارن ماتریس استقرا فرض طبق .σ١ = {λ١, λ٢, ..., λn−١}

ͬ کنیم م تعریف

λ =
λ١ + λ٢ + ٢λ٣ + ...+ ٢n−۴λn−٢

٢n−٣ . (٧)
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خیز ͷسب مسعود زاده، زنگوئͬ س.

صورت به A متقارن ماتریس داد نشان ͬ توان م

A =

[
A١ a

bT λ+λn−١
٢

]
, (٨)

به نسبت تقارن طوریͺه به هستند (n− ٢)× ١ بعد با بردارهایی b و a و (n− ٢)× (n− ٢) متقارن ماتریسͬ A١ آن در که است
مجموعه با ٢ مرتبه از B متقارن ماتریس n = ٢ حالت به بنا .λ′ = λ+λn−١

٢ ͬ دهیم م قرار حال است. برقرار A ماتریس در اصلͬ قطر
صورت به σ٢ = {λ′, λn} ویژه مقادیر

B =

[
λ′+λn٢

λ′−λn٢
λ′−λ٢٢

λ′+λn٢

]
, (٩)

C =

[
A١ asT

sbT B

]
متقارن ماتریس لم این طبق لذا است. برقرار B و A ماتریس های برای (١) لم شرایط تمام که آنجایی از ͬ باشد. م

است. مسئله از جوابی σ = {λ١, λ٢, ..., λn} ویژه مقادیر مجموعه با

است کافͬ n = ٢ اگر مثال برای رسید. خواهیم نامنفͬ متقارن ماتریس ͷی به کنیم لحاظ ویژه مقادیر روی شرایطͬ اگر .١ نکته
ͬ شود. م نامنفͬ λ١ > |λ٢ + ٢λ٣| شرط با مذکور متقارن ماتریس n = ٣ اگر همچنین λ١ > |λ٢|

.i = ٢, ..., n−٢ و λ١ > |λ٢ +٢λ٣ + ...+٢i−٢λi| است لازم ماتریس بودن نامنفͬ برای حدس ͷی عنوان کلͬ، حالت در

عددی مثال .٣
زیر صورت به را A ماتریس، n = ٢ حالت طبق .σ١ = {۵,−١} ͬ دهیم م قرار .σ = {۵,−٢−,١−,١} کنید فرض .١ مثال

داشت: ]خواهیم
λ١+λ٢٢

λ١−λ٢٢
λ١−λ٢٢

λ١+λ٢٢

]
=

[٢ ٣
٣ ٢

]
, (١٠)

صورت به را B بͽیریم، نظر در σ٢ = {λ١+λ٢٢ , λ٣} = {١−,٢} اگر ادامه در هستند. b = ٣ و a = ٣ و A١ = ٢ آن در که
از C ماتریس پس s =

[ ٢√١
٢√١

]
با است برابر آن با متناظر نرمال ویژه بردار بنابراین µ١ = ٢ چون داشت. خواهیم σ٢ طیف

[١
٢

٣
٢

٣
٢

١
٢

]
ͬ آید م بدست زیر صورت به σ = {۵,−١−,١} طیف با ،٣ مرتبه

C =

[
A١ asT

sbT B

]
=


٢ ٢√٣

٢√٣
٢√٣

١
٢

٣
٢

٢√٣
٣
٢

١
٢

 . (١١)

داریم پس .σ٣ = {λ١+λ٢+٢λ٣۴ , λ۴} = {١
٢ ,−٢} و b =

[ ٢√٣
٣
٢

]
و a =

[ ٢√٣
٣
٢

]
و A =

[ ٢ ٢√٣
٢√٣

١
٢

]
ͬ دهیم م قرار حال

نهایت در و s =

[ ٢√١
٢√١

]
با است Mبرابر با متناظر شده نرمال ویژه بردار و آن ماکسیمال مقدار µ = ١

٢ که B =

[
−٣

۴
۵
۴

۵
۴ −٣

۴

]
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معین طیف برای بدیهͬ غیر متقارن ماتریس ساخت

ͬ آید م بدست زیر صورت به C ،۴ × ۴ متقارن ماتریس

C =

[
A١ asT

sbT B

]
=


٢ ٢√٣

٣
٢

٣
٢

٢√٣
١
٢

٣
٢√٢

٢
٢√٢

٣
٢

٣
٢√٢ −٣

۴
۵
۴

٣
٢

٣
٢√٢

۵
۴ −٣

۴

 (١٢)

است. σ = {۵,−٢−,١−,١} آن طیف دید ͬ توان م که
که رسید خواهیم زیر ۵ × ۵ متقارن ماتریس به فوق، روند از استفاده با σ = {۵,−٢−,١−,١, ٩

۴} طیف داشتن با اگر .٢ مثال
ͬ باشند: م σ مجموعه همان آن ویژه مقادیر

C =



٢ ٢√٣
٣
٢

٣
٢√٢

٣
٢√٢

٢√٣
١
٢

٣
٢√٢

٣
۴

٣
۴

٣
٢

٣
٢√٢ −٣

۴
۵

۴√٢
۵

۴√٢
٣

٢√٢
٣
۴

۵
۴√٢ −٣

۴
٣
۴

٣
٢√٢

٣
۴

۵
۴√٢ −٣

۴
٣
۴


. (١٣)
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

معادلات برای پیوسته ای تکه ایهای جمله چند فضای در محلͬ هم روش وتحلیل تجزیه
ضعیف منفرد باهسته استاندارد غیر ولترای انتگرال

بین پیش سعید لو، حمزه افسانه

معادله نوع این رابرای ویͺتایی وجود قضیه و رامعرفͬ آن از خاصͬ وحالت ولترا غیراستاندارد انتگرال معادله ابتدا مقاله دراین چͺیده.
چندجمله اساس بر را معادله این جواب و نظرگرفته در را ولترا غیراستاندارد انتگرال معادله ضعیف منفرد حالت ادامه در کنیم. مͬ مطرح
تواند مͬ افراز نوع و محلͬ هم نقاط انتخاب زنیم. مͬ تقریب پیوسته ای تکه های ای جمله چند فضای در لاگرانژ پایه با ای تکه های ای
مͬ تضمین مدرج و یͺنواخت افراز در را روش همͽرایی محلͬ، هم نقاط مناسب انتخاب با مقاله این در باشد. موثر روش همͽرایی در

نماییم. مͬ تصدیق را روش این واعتبار صحت عددی نتایج ارائه با پایان در کنیم.

معرفͬ .١
شود: مͬ تعریف زیر صورت به ولترا استاندارد غیر انتگرال معادله

u(t) = g(t) +

∫ t

٠
K(t, s, u(t), u(s))ds, t ∈ I := [٠, T ], (١)

بررسͬ [١] مقاله در معادلات از نوع این ویͺتایی وجود قضیه و عددی تحلیل هستند. معلوم K و g توابع و مجهول تابع u(t) آن در که
درنظر زیر فرم به توان مͬ را یافته تعمیم اتو‐کانولوشن انتگرال معادله ولترا، غیراستاندارد معادلات از خاصͬ نوع عنوان به است. شده

گرفت:
u(t) = g(t) +

∫ t

٠
k(t, s)u(t− s)u(s)ds, t ∈ I := [٠, T ],

معادلات است.این مجهول تابعͬ u(t) و معلوم توابعͬ g ∈ C(I)و K ∈ C(D) ، D := {(t, s) : ٠ ≤ s ≤ t ≤ T} آن در که
در هسته حافظه کردن مشخص به توان مͬ کاربردها جمله ،از کنند مͬ بازی ͬͺفیزی های پدیده از بسیاری توصیف در را مهمͬ نقش

اشارهکرد. [۴] میتاگ‐لفلر توابع مانند خاص توابع برخͬ محاسبه [٣]و ͷوالاستیͺویس تئوری
گیریم: مͬ نظر در زیر صورت به را ضعیف منفرد هسته با ولترا غیراستاندارد انتگرال معادله ما مقاله این در حال

u(t) = g(t) +

∫ t

٠
(t− s)−αK(t, s, u(t), u(s))ds, t ∈ I := [٠, T ](٠ < α < ١), (٢)

تقریب برای را ای تکه های ای چندجمله اساس بر محلͬ هم عددی روش معلوم اند. توابعͬ K و g توابع و مجهول تابع u(t) آن در که
کنیم. مͬ تضمین مدرج و یͺنواخت افراز در را روش همͽرایی محلͬ، هم نقاط مناسب انتخاب با و بریم مͬ بͺار معادله این جواب

های ای چندجمله براساس محلͬ هم روش ضعیف، منفرد هسته با ولترا انتگرال معادلات غیراستاندارد، ولترای انتگرال معادلات کلیدی: واژه های
ای. تکه

.13D45, 39B42 :[٢٠١٠] موضوعͬ طبقه بندی
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ضعیف منفرد باهسته استاندارد غیر ولترا انتگرالͬ معادله برای محلͬ هم روش وتحلیل تجزیه

ولترا غیراستاندارد انتگرال معادلات جواب یͺتایی و وجود .٢
کند: صدق زیر شرایط در (١) ولترای استاندارد غیر انتگرال معادلات در شده داده توابع که کنید فرض [١] .١ قضیه

K؛ ∈ Cm(D × R× R)و g ∈ Cm(I) .١
که جایی |K(t, s, u١, v١) − K(t, s, u٢, v٢)| ≤ L(t, s)|u١ − u٢| + M |v١ − v٢|, ui, vi ∈ R, i = ١, ٢, .٢
مͬ (t, s) ∈ D و δ ∈ (٠, ١) که ∫ t

٠ L(t, s)ds ≤ ١ − δ و ٠ < L(t, s) ≤ M و D = {(t, s) : ٠ ≤ s, t ≤ T}
باشند.

دارد. وجود I در (١) ولترا استاندارد غیر انتگرالͬ معادلات برای u ∈ Cm(I) منحصربفرد جواب ͷی صورت این در
مشتقات دانیم مͬ m ≥ ١ برای ولͬ داد تعمیم توان مͬ نیز ضعیف منفرد حالت برای را قضیه این m = ٠ برای کنید توجه

نباشند. انتگرالکراندار بازه ابتدای در است ممͺن ضعیف منفرد معادلات

پیوسته ای تکه های ای جمله چند فضای در محلͬ هم روش .٣
ͷی برای گیریم. مͬ نظر در (٢) معادله جواب تقریب برای را ای تکه های ای چندجمله اساس بر محلͬ هم عددی روش بخش، این در

کنیم: مͬ تعریف زیر صورت به را I شده داده بازه بر افراز ͷی ما r ≥ ١ حقیقͬ عدد ͷی و N ≥ ٢ شده داده صحیح عدد

Irh := {tn : (
n

N
)rT : n = ٠, ١, . . . , N}.

افراز ͷی است، r = ١ که زمانͬ و باشد مͬ r بندی درجه نمای با [٠, T ] روی مدرج افراز ͷی Irh صورت این در باشد r > ١ اگر
مͬ نظر در را زیر های نماد n = ٠, ١, . . . , N − ١ برای چنین هم کنیم. استفاده نیز Ih := I١

h نماد از که طوری به داریم یͺنواخت
گیریم:

hn := tn+١ − tn, σn := [tn, tn+١], h := max
(n)

{hn} = hN−١.

محلͬ هم نقاط از استفاده با را (٢) معادله به مربوط u جواب حال
Xh := {tn + cihn : ٠ < c١ < . . . < cm ≤ ١, (٠ ≤ n ≤ N − ١)},

زنیم مͬ تقریب شود، مͬ تعریف زیر صورت به که S
(٠)
m (Irh) پیوسته ای جمله چند فضای از uh با

S(٠)
m (Ih) := {v ∈ C(I) : v|σn ∈ Pm(σn)(٠ ≤ n ≤ N − ١)}.

محلͬ: هم معادله توسط uh تقریبی جواب بنابراین

uh(t) = g(t) +

∫ t

٠
(t− s)−αK(t, s, uh(t), uh(s))ds, t ∈ Xh, (٣)

صورت به توان مͬ را uh محلͬ هم جواب موضعͬ نمایش σn های بازه زیر از ͷهری در .uh(٠) = g(٠) آن در که آید مͬ دست به
نظرگرفت: در زیر

uh(tn + shn) =
m∑
j=٠

Lj(s)Un,j , s ∈ [٠, ١], (۴)
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بین پیش س. لو، حمزه ا.

: های ای جمله چند همچنین . Un,٠ = uh(tn)و Un,j = uh(tn,j) tn,jو = tn + cjhn که طوری به

L٠(s) : = (−١)m
m∏
k=١

s− ck
ck

,

Lj(s) : =
s

cj

m∏
k ̸=j

s− ck
cj − ck

, j = ١, ٢, . . . ,m, s ∈ [٠, ١],

از استفاده و (٣) در (۴) و محلͬ هم نقاط جایͽذاری با حال هستند. {٠} ∪ {ci} متمایز نقاط به توجه با لاگرانژ پایه توابع دهنده نشان
داریم: مناسب متغیر تغییر

Un,i = g(tn,i) +

∫ tn,i

٠
(tn,i − s)−αK(tn,i, s, Un,i, uh(s))ds

= g(tn,i) +

∫ tn

٠
(tn,i − s)−αK(tn,i, s, Un,i, uh(s))ds

+

∫ cihn

tn

(tn,i − s)−αK(tn,i, s, Un,i, uh(s))ds

= g(tn,i) +

n−١∑
l=٠

h١−α
l

∫ ١

٠
(
tn,i − tl

hl
− s)−αK(tn,i, tl + shl, Un,i,

m∑
j=٠

Lj(s)Ul,j)ds

+ h١−α
n

∫ ci

٠
(ci − s)−αK(tn,i, tn + shn, Un,i,

m∑
j=٠

Lj(s)Un,j)ds, (i = ١, ٢, . . . ,m)

شود. مͬ حاصل (۴) رابطه از معادله تقریبی جواب Un,i مجهولات به نسبت بالا دستگاه حل با

عددی نتایج .۴
تمامͬ که است ذکر به لازم گیریم. مͬ نظر در را ضعیف منفرد هسته با ولترا غیراستاندارد انتگرال معادلات از مثالͬ مقاله از بخش این در

است. شده انجام متمتیͺا افزار نرم از استفاده با محاسبات
بفرم: ضعیف منفرد هسته با غیراستاندارد ولترا انتگرالͬ معادله .١ مثال

u(t) = g(t) +

∫ t

٠
١√
t− s

× (t× s)× (u(t) + u(s)) ds,

α =
١
٢ فرض با باشد. u(t) = et معادله این دقیق جواب که شود مͬ تعیین طوری g(t) تابع بͽیرید. نظر در K(t, s) = t× s با را

ͬ دهیم. م ١گزارش جدول در ای نقاطگره در مختلف N و m = ٢, ٣ برای را خطا ماکزیمم r = ١ و

m = ٢, ٣ برای محلͬ هم روش خطا ماکزیمم :١ جدول
N c١ =

١
٢ , c٢ = ١ c١ =

۴
۵ , c٢ =

٩
١٠ c١ =

١
٣ , c٢ =

١
٢ , c٣ = ١ c١ =

١
٣ , c٢ =

١
٢ , c٣ =

٨
٩

۴ ١٫٧۴ × ١٠−۴ ٧٫٨٨ × ١٠−۴ ٢٫۵٢ × ١٠−۵ ١٫۴٩ × ١٠−۵

٨ ٩٫۴٩ × ١٠−۵ ١٫۴٩ × ١٠−۴ ٩٫٢١ × ١٠−۶ ٢٫١۶ × ١٠−۶

١۶ ٢٫٠٣ × ١٠−۵ ١٫٠٣ × ١٠−۴ ٣٫٨٢ × ١٠−۶ ٩٫١۵ × ٧−١٠
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ضعیف منفرد باهسته استاندارد غیر ولترا انتگرالͬ معادله برای محلͬ هم روش وتحلیل تجزیه
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

نیم کره ای پرک های روی گرما انتقال مسئله ی حل برای متوالͬ ͬ سازی خط روش

باقری صفیه

بپردازیم. نیم کره ای پرک ها روی انتقالگرما مسئله حل به متوالͬ ͬ سازی خط روش به کارگیری با تا داریم قصد پژوهش این در چͺیده.
ͬͺتریͺال تراشه های و شیمیایی پردازش تجهیزات تهویه کننده ها، اتومبیل ها، یخچال ها، مثل صنعتͬ ابزارهای از بسیاری در پرک ها این
رانگ‐کوتا روش و متوالͬ ͬ سازی خط روش اساس بر آمده به دست نتایج بین مقایسه ای پیشنهادی روش دقت بررسͬ برای دارند. کاربرد

است. شده انجام

حاکم معادلات و پیش گفتار .١
ͬ دهند. م افزایش را شده منتقل سطحگرمای و تبادلگرما محیط آن ها هستند. تبدیلگرما نرخ بردن بالا برای ابزار کارآمدترین پرک ها،
دیͽر شͺل های به یا و مستطیلͬ دایره ای،کروی، ͬ توانند م پرک ها دادند. ارائه موضوع این روی کامل بررسͬ ͷی [٢] همͺاران و کراس
قرار استفاده مورد بیش تر آسان ساخت پروسه ی و پردازش در سهولت به خاطر شͺل مستطیل پرک های مختلف، اشͺال بین از باشند.
است، شده داده نشان ١ شͺل در که همان طور باشد. دما از تابعͬ پرک ها در گرما تبدیل که است واقعیت ͷی این هم چنین ͬ گیرند. م
توجه باید ͬ کند. م منتقل تابشͬ–همرفتͬ روش با را گرما پرک، سطح ͬ گیریم. م نظر در ،R شعاع با نیم کره ای را پرک عمودی مقطع

همرفتͬ‐تابشͬ روش با نیم کره ای پرک های روی انتقالگرما مسئله ی :١ شͺل

تابشͬ انتقالگرمای برای چاه موثر دمای ،Ta را اطراف هوای دمای دارند. دما به وابسته درونͬ مبدل،گرمای پرک ها ی که باشیم داشته
را سطح تشعشع قابلیت و q∗ را داخلͬ مبدلگرمای ،Tk را پرک ویژه ظرفیتگرمای و h را ثابت همرفتͬ انتقالگرمای ضریب ،Ts را

:[۴] بͽیرید نظر در را زیر روابط هستند. دما از توابعͬ ͬͽهم که ͬ  کنیم م فرض ،ϵ
k = k١)٠ + α(T (x)− Ta)), q

∗ = q١)٠ + λ(T (x)− Ts)), ε = ε١)٠ + β(T (x)− Ts)), (١)
انتقالگرما. نیم کره ای، پرک های همرفتͬ‐تابشͬ، روش هم محلͬ، متوالͬ،روش ͬ سازی خط روش کلیدی: واژه های

.13D45, 39B42 :[٢٠١٠] موضوعͬ طبقه بندی
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متوالͬ ͬ سازی خط روش

داخلͬ مبدلگرمای q٠ و Ts چاه دمای در سطح تشعشع قابلیت ε٠ ،Ta چاه همرفت دمای در پرک ویژه ی ظرفیتگرمایی k٠ آن در که
دما با سطح تشعشع قابلیت و داخلͬ گرمایی مبدل ویژه، گرمای ظرفیت تغییر از به ترتیب λ و β ،α ثابت های ͬ باشند. م Ts دمای در

ͬ شود: م نوشته زیر به صورت سیستم این برای انرژی تعادل رابطه ی ͬ شوند. م −q(x)اندازه گیری q(x+∆x) + q∗A(x)∆x)− hp(x)∆x(T (x)− Ts),

−αεp(x)
(
T (x)۴ − T ۴

s

)
= ٠.

(٢)

به صورت رسانش فوریه ی قانون هم چنین

q(x) = k(T (x))A(x)
dT (x)

dx
, (٣)

:[١] داشت خواهیم (٢) در (٣) و (١) معادله ی جایͽذاری و آن از حد وگرفتن ∆x بر تقسیم از بعد است. d
dx (A(x)) k١)٠ + α(T (x)− Ta))

dT (x)
dx + q١)٠ + λ(T (x)− Ts))A(x),

−hp(x) (T (x)− Ta)− δp(x)ε١)٠ + β(T (x)− Ts))
(
T (x)۴ − T ۴

s

)
= ٠.

(۴)

x و r پارامتر دو بین رابطه ی ،١ شͺل به توجه با ͬ شود. م فرض T (٠) = Tb, T
′
(R) = ٠ شͺل به پایه ثابت دمای مرزی شرایط

داریم: هم چنین ͬ شود. م بیان r٢ = R٢ − x٢. به صورت
A(x) = π(R٢ − x٢), p(x) = ٢π(√R٢ − x٢).

:[١] ͬ گیریم م نظر در را زیر بعد بدون θپارامترهای = T
Tb
, θs =

Ts
Tb
, θa = Ta

Tb
, X = x

R , A = αTb, B = λTb,

c = βTb, Ng = R٢q٠
Tbk٠ , Nc = ٢hR

k٠ , Nr =
δεT ٣

bR

k٠ .

سطح همرفت تأثیر به که است رسانش‐همرفتͬ پارامتر Nc درونͬ، مبدلگرمای تأثیر به که است رسانش‐تبدیل پارامتر Ng آن در که
ظرفیتگرمایی، به ترتیب C و B ،A پارامترهای ͬ کنند. م اشاره پرک تابش تأثیر به که است تابشͬ‐رسانشͬ پارامتر ͷی Nr و پرک
چاه گرمای تبدیل همرفت دمای و بعد بدون همرفت دمای به ترتیب θs و θa هم چنین ͬ باشند. م سطح تشعشع قابلیت و گرما مبدل

به صورت را (۴) معادله ی ͬ توان م نهایت در ͬ باشند. م

(١ +A(θ − θa))
d٢θ
dx٢ +A

(
dθ

dx

)٢
− ٢x

١ − x٢ (١ +A(θ − θa))
dθ

dx
(۵)

+Ng(١ +B(θ − θs))−Nc
(θ − θs)√١ − x٢ − Nr√١ − x٢ (١ + C(θ − θs))(θ

۴ − θ۴
s) = ٠,

با را شده داده مرزی شرایط با (۵) غیرخطͬ معادله ی داریم قصد ادامه در کرد. محاسبه θ(٠) = ١, θ′
(١) = ٠ مرزی شرایط با و

به صورت معادله را جواب کنیم. حل [٣] SLMͬمتوال ͬ سازی خط روش از استفاده

θ(x) = θi(x) +

i−١∑
m=٠

θm(x),

خطͬ معادلات دسته به θ′′
i و θ′

i ،θi شامل غیرخطͬ جملات حذف با نموده جایͽذاری (۵) معادله ی در و ͬ گیریم م نظر در
a١,i−١(x)θ

′′
i (x) + a٢,i−١(x)θ

′
i(x) + a٣,i−١(x)θi(x) = ri−١(x), (۶)
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باقری ص.

تعریف زیر به صورت ri−١(x) و k = ١, ٢, ٣ ،ak,i−١(x) توابع آن در که ͬ رسیم م θi(٠) = ٠, θ′
i(١) = ٠ مرزی شرایط با

ͬ شوند: م

a١,i−١(x) = ١ +A

i−١∑
m=٠

θm(x)−Aθa,

a٢,i−١(x) = ٢A
i−١∑
m=٠

θ
′
m(x)−

٢x
١ − x٢

(
١ +A

i−١∑
m=٠

θm(x)−Aθa

)
,

a٣,i−١(x) = A

i−١∑
m=٠

θ
′′
m(x)−

٢x
١ − x٢ A

i−١∑
m=٠

θ
′
m(x) +NgB −

Nc
√١ − x٢ −

Nr
√١ − x٢

+

۴
(

i−١∑
m=٠

θm(x)

)٣
+ ۵C

(
i−١∑
m=٠

θm(x)

)۴
− Cθ۴

s − ۴Cθs

(
i−١∑
m=٠

θm(x)

)٣ ,

ri−١(x) = −
i−١∑
m=٠

θ′′′m(x)−A

i−١∑
m=٠

θm(x)

i−١∑
m=٠

θ
′′
m(x) +Aθa

i−١∑
m=٠

θ
′′
m(x)

−A

(
i−١∑
m=٠

θ
′
m(x)

)٢
+NgBθs +

NC
√١ − x٢

(
i−١∑
m=٠

θm(x)− θs

)

+
٢x

١ − x٢

(
i−١∑
m=٠

θ
′
m(x) +A

i−١∑
m=٠

θm(x)

i−١∑
m=٠

θ
′
m(x)−A.θa

i−١∑
m=٠

θ
′
m(x)

)

−Ng

(
١ +B

i−١∑
m=٠

θm(x)

)
−

Nr
√١ − x٢

Cθ۵
s + Cθs

(
i−١∑
m=٠

θm(x)

)۴
+

Nr
√١ − x٢

( i−١∑
m=٠

θm(x)

)۴
− θ۴

s + C

(
i−١∑
m=٠

θm(x)

)۵
− Cθ۴

s

i−١∑
m=٠

θm(x)

 .

(۶) شده ͬ سازی خط معادلات مجموعه ͬ کنیم. م آغاز θ٠(x) = ١ اولیه ی تقریب با مرزی، شرایط به توجه با را SLM الͽوریتم
سری شͺل به را (۶) معادله ی جواب دلخواه، طبیعͬ n ͷی برای ابتدا ͬ دهیم. م ادامه دستگاه حل و هم محلͬ روش با را SLM الͽوریتم

ͬ زنیم: م تقریب اول نوع چبیشف چندجمله ای های اساس بر زیر شده ی قطع

θi(x) =

n∑
i=٠

θijTj(٢x− ١). (٧)

(n+١)محاسبه ی هدف ͬ دهیم. م تشͺیل را ͬ مانده باق تابع نموده، جای گذاری (۶) خطͬ دیفرانسیل معادلات در را (٧) شده ی قطع سری
ͬ مانده باق تابع آن، بر علاوه ͬ آید. م بوجود شرایط اعمال و (٧) بسط از معادله دو مرزی، شرایط به توجه با ͬ باشد. م (٧) بسط ضریب
ͷی قبلͬ، معادله ی دو با که ͬ شود م حاصل معادله (n − ١) نتیجه در گردد. صفر j = ١, . . . , n − ١ ،xj = cos

(
πj
N

)
در باید

k = ١, ٢, . . . , n ،θij یعنͬ (٧) بسط ضرایب همان دستگاه جواب داد. خواهند تشͺیل مجهول (n+ ١) با معادله (n+ ١) دستگاه
دیفرانسیل معادله جواب پایان، در و ͬ شود م محاسبه تکرار هر در (۶) خطͬ دیفرانسیل معادله جواب تقریب نتیجه در ͬ کند. م تولید را

است. SLM الͽوریتم تکرار M،تعداد آن در که ͬ شود م زده تقریب θ(x) ≃ ∑M
i=٠ θi(x) بسط با غیرخطͬ

عددی نتایج .١. ١
نمودار در نتایج و حلکرده SLM تکرار شش با و Nc ،Ng پارامتر مختلف مقادیر ،n = ٣٠ پایه تعداد نظرگرفتن در با را مسئله این
،Nr = ٠ ،θa = θs = ٠٫۵ ،A = B = c = ٠٫٨ مقادیر ازای به تقریبی تابع نمودار ،٣ شͺل در است. شده داده نمایش ٢
مطلوبی دقت از پیشنهادی روش که ͬ شود م مشاهده است. شده مقایسه رانگ‐کوتا روش عددی مقادیر با Nc = ٠٫۵ و Ng = ٠٫١

است. برخوردار
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متوالͬ ͬ سازی خط روش
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رانگ‐کوتا روش و شش مرتبه SLM روش از انتقالگرما مسئله ی تقریبی جواب بین مقایسه ی :٣ شͺل
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

تکراری متناهͬ تفاضل روش از استفاده با جفری‐هامل جریان معادله عددی حل

هاشمͬ سادات اعظم حیدری، محمد یزدانͬ، زهراسادات

پرداخت. خواهیم سیالات ͷانیͺم در کاربردی مسائل از ͬͺی به عنوان جفری‐هامل جریان مسئله عددی حل به پژوهش این در چͺیده.
روش از سپس و شده تبدیل خطͬ دیفرانسیل معادلات از دنباله ای به ͬ سازی شبه خط روش از استفاده با حاکم، غیرخطͬ معادلات ابتدا
روش از حاصل نتایج با مقایسه ای پیشنهادی، روش کارایی دادن نشان برای پایان در ͬ کنیم. م استفاده آن ها حل برای متناهͬ تفاضل

ͬ شود. م ارائه پرتابی روش با شده ترکیب چهار مرتبه رانگ‐کوتا

پیش گفتار .١
ͬͺی جفری‐هامل١ جریان مسئله ͬ شوند. م توصیف دیفرانسیل معادلات از مختلفͬ انواع توسط ͬͺفیزی پدیده های از وسیعͬ طیف
مدل سازی را غیرموازی دیواره دو بین ناپذیر تراکم لزج سیال جریان که است سیالات ͷانیͺم در مسائل مهم ترین و پرکاربردترین از
را آن سرعت و سیال حرکت چͽونگͬ هارتمن٣، عدد و مغناطیسͬ رینولدز٢ عددی پارامتر دو جفری‐هامل جریان مسئله در .[٣] ͬ کند م
درنظر ١ شͺل مطابق را ٢α زاویه با سخت صفحه دو بین ناپذیر تراکم لزج سیال ͷی از ثابت دوبعدی جریان ͬ کنند. م تعیین کانال در
به طور سرعت که کنید فرض ͬ نامند. م همͽرا کانال را مسئله α < ٠ زاویه برای و واگرا کانال را مسئله α > ٠ زاویه برای بͽیرید.

.٢α زاویه با واگرا کانال ͷی در جفری‐هامل جریان :١ شͺل

و سرعت مولفه u قطبی، مختصات دستگاه مولفه های θ و r آن در که شود نظرگرفته در v = (u(r, θ), ٠) به صورت و شعاعͬ کامل
متناهͬ. تفاضل روش و ͬ سازی شبه خط روش جفری‐هامل، جریان معادله کلیدی: واژه های

.65M06, 80M20 :[٢٠١٠] موضوعͬ طبقه بندی
1Jeffery-Hamel flow problem
2Reynolds
3Hartmann
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جفری‐هامل جریان معادله عددی حل

به صورت قطبی مختصات در ناویر‐استوکس۴ معادلات و پیوستگͬ معادله جفری‐هامل، جریان مسئله برای هستند. شعاعͬ سرعت v

:[٣] ͬ آیند م به دست زیر
∂

∂r

(
ru(r, θ)

)
= ٠, (١)

u(r, θ)
∂u(r, θ)

∂r
=

−١
ρ

∂ρ

∂r
+ ν

(
∇٢u(r, θ)− u(r, θ)

r٢
)
, (٢)

−١
ρ

∂P

∂θ
+

٢ν
r

∂u(r, θ)

∂θ
= ٠, (٣)

بدون پارامترهای تعریف با حال هستند. جنبشͬ لزجت ضریب ν و سیال چͽالͬ ρ فشار، P ،∇٢ = ∂٢
∂r٢ + ١

r
∂
∂r +

١
r٢ ∂٢

∂θ٢ آن در که
و هستند گوه شͺل کانال زاویه نصف α و (−α < θ < α) جهتͬ زاویه θ آن ها در که F (x) = f(θ)

fmax
و x = θ

α به صورت بعد
داریم: را زیر غیرخطͬ سوم مرتبه معمولͬ دیفرانسیل معادله فشار، جمله حذف و (٣) و (٢) در Fجایͽذاری ′′′(x) + ٢αReF (x)F ′(x) + ۴α٢F ′(x) = ٠, x ∈ [٠, ١],
F (٠) = ١, F ′(٠) = ٠, F (١) = ٠,

(۴)

است. رینولدز عدد Re = αfmax

ν آن در که

مسئله عددی حل .٢
دهیم. ارائه (۴) مسئله حل برای تکراری روند ͷی [١] متناهͬ تفاضل و ͬ سازی شبه خط روش های ترکیب با داریم سعͬ بخش این در

داریم: F (٠) = ١ اولیه شرط اعمال و [٠, x] بازه روی (۴) معادله از انتگرال گیری با ابتدا هدف، این Fبرای ′′(x) + αReF ٢(x) + ۴α٢F (x) = F ′′(٠) + αRe+ ۴α٢,

F ′(٠) = ٠, F (١) = ٠,
(۵)

مقدار مسائل از دنباله ͷی به ͬ توان م را (۵) مسئله [٢] ͬ سازی شبه خط روش از استفاده با حال است. مجهول مقداری F ′′(٠) آن در که
تبدیلکرد: زیر به صورت خطͬ Fمرزی ′′

n+١(x) +
(٢αReFn(x) + ۴α٢)Fn+١(x) = F ′′

n+(٠)١ + αReF ٢
n(x) + L,

F ′
n+(٠)١ = ٠, Fn+(١)١ = ٠, n = ٠, ١, . . . ,

(۶)

آن به گونه ای معمولا و ͬ شود م درنظرگرفته اولیه شروع به عنوان F٠(x) تابع (۶) رابطه در که داریم توجه .L = αRe+ ۴α٢ آن در که
حال ͬ گیریم. م درنظر را F٠(x) = ١ − x٢ تابع اینجا در سازد. برآورده را مسئله مرزی و اولیه شرایط حداقل که ͬ کنیم م انتخاب را
،h = ١

M گام طول با را [٠, ١] بازه ابتدا منظور این برای ͬ پردازیم. م متناهͬ تفاضل روش از استفاده با تکرار هر در (۶) معادله حل به
درنظرگرفتن و (۶) معادله در xi جایͽذاری با ͬ گیریم. م درنظر i = ٠, ١, . . . ,M برای را xi = ih نقاط و ͬ کنیم م افراز M ∈ N

[١] تفاضلͬ فرمول های

F ′′
n+١(xi) =

١
h٢

[
Fn+١(xi+١)− ٢Fn+١(xi) + Fn+١(xi−١)

]
+O(h٢), (٧)

F ′′
n+(٠)١ = F ′′

n+١(x٠) =
١
h٢

[
٢Fn+١(x٠)− ۵Fn+١(x١) + ۴Fn+١(x٢)− Fn+١(x٣)

]
+O(h٢), (٨)

4Navier-Stokes
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هاشمͬ سادات ا. م.حیدری، ز.یزدانͬ،

ͬ آید: م به دست زیر گسسته شͺل
١
h٢F

[i+١]
n+١ +

(
− ٢

h٢ + ٢αReF [i]
n + ۴α٢)F [i]

n+١ +
١
h٢F

[i−١]
n+١ +

۵
h٢F

[١]
n+١ (٩)

− ۴
h٢F

[٢]
n+١ +

١
h٢F

[٣]
n+١ = αRe(F [i]

n )٢ + L+
٢
h٢ ,

شامل خطͬ معادلات دستگاه ͷی (٩) رابطه این که به توجه با .F [i]
n = Fn(xi) و n = ٠, ١, . . . ،i = ٢, ٣, . . . ,M − ١ آن در که

داریم. نیاز دیͽر معادله ͷی به مجهولات محاسبه برای لذا است، i = ١, ٢, . . . ,M − ١ ،F [i]
n+١ مجهول M − ١ و معادله M − ٢

پیشرو تفاضل فرمول و F ′
n+١(x٠) = ٠ اولیه شرط از استفاده با را معادله این

F ′
n+(٠)١ = F ′

n+١(x٠) =
١
h

[
− ٣

٢Fn+١(x٠) + ٢Fn+١(x١)−
١
٢Fn+١(x٢)

]
+O(h٢),

ͬ آوریم: م به دست زیر به صورت

٢F [١]
n+١ −

١
٢F

[٢]
n+١ =

٣
٢ . (١٠)

دستگاه ͬ توان م اکنون .Fn+١(x٠) = F
[٠]
n+١ = ١ شده انجام محاسبات تمام در F (٠) = ١ اولیه شرط اساس بر که داریم توجه

آن در که بازنویسͬکرد AnFn+١ = bn ماتریسͬ به شͺل را (١٠) و (٩) معادلات

An =



۵
h٢ −۴

h٢ ١
h٢ ٠ · · · ٠

... ... ... ... ... ...
۵
h٢ −۴

h٢ ١
h٢ ٠ · · · ٠

۵
h٢ −۴

h٢ ١
h٢ ٠ · · · ٠

۵
h٢ −۴

h٢ ١
h٢ ٠ · · · ٠

٢ −١
٢ ٠ ٠ · · · ٠


+



١
h٢ γ٢ ١

h٢ ٠ · · · ٠
٠ . . . . . . . . . . . . ...
... . . . ١

h٢ γM−٣ ١
h٢ ٠

٠ · · · ٠ ١
h٢ γM−٢ ١

h٢

٠ · · · ٠ ٠ ١
h٢ γM−١

٠ · · · ٠ ٠ ٠ ٠


,

همچنین .γi = −٢
h٢ + ٢αReF

[i]
n + ۴α٢ و

bn =
[
δ٢ δ٣ δ۴ · · · δM−١ ٣

٢
]T

, δi = αRe(F [i]
n )٢ + L+

٢
h٢ .

عددی نتایج .٣
نرم افزار از استفاده با محاسبات تمام که است به٢ذکر لازم ͬ پردازیم. م شده مطرح روش از حاصل عددی نتایج بیان به بخش این در
مقادیر ١ جدول در ͬͺفیزی محاسبات در F ′′(٠) مقدار اهمیت به توجه با است. شده انجام تکرار پنج در و M = ۶٠٠ برای میپل،
نمودارهای ٢ شͺل در مقایسهکرده ایم. را پرتابی۵ روش با شده ترکیب چهار مرتبه رانگ‐کوتا روش و شده مطرح روش از آمده به دست
شده ارائه چهار مرتبه رانگ‐کوتا روش به نسبت مطلق خطای و رینولدز عدد مختلف مقادیر به ازای آمده به دست تقریبی جواب به مربوط

ͬ دهد. م نشان را پیشنهادی روش مناسب کارآیی و قبول قابل دقت ٢ شͺل و ١ جدول در حاصل عددی نتایج است.

5Shooting method
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جفری‐هامل جریان معادله عددی حل

.α = ۵◦ برای رانگ‐کوتا روش و پیشنهادی روش از حاصل F ′′(٠) عددی مقادیر مقایسه :١ جدول
Re پیشنهادی روش [٣] چهارم مرتبه رانگ‐کوتا
٢٠ −٢٫۵٢٧١٩١۶٢ −٢٫۵٢٧١٩٢٢۵
۴٠ −٣٫١۶٩٧١١٣٧ −٣٫١۶٩٧١٢٢٠
۶٠ −٣٫٩۴٢١٣٩٨٣ −٣٫٩۴٢١۴٠٢٨
٨٠ −۴٫٨۴۵٠٧٢۴٢ −۴٫٨۴۵٠٧١٨٢

١٠٠ −۵٫٨۶٩١۶٧٣۵ −۵٫٨۶٩١۶۵١١

.Re مختلف مقادیر به ازای رانگ‐کوتا روش به نسبت آن مطلق خطای و پیشنهادی روش از حاصل تقریبی جواب های نمودار :٢ شͺل
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

در کلاهبرداری کشف برای ترکیبی پشتیبان بردار ماشین بر مبتنͬ رویͺردی ارائه
مالͬ پرداخت سرویس های

ابتیاع معراج ابتیاع، مجید

افزایش با است. یافته افزایش کارت ها این با تراکنش حجم بانکͬ، صنعت در اعتباری کارت های روزافزون رشد با امروزه چͺیده.
وجود با است. شده تبدیل بزرگ مشͺلات از ͬͺی به حوزه این در تقلب زمینه تراکنش ها، حجم و ͬͺترونیͺال کارت های کاربران تعداد
برای لذا داشت. خواهد پی در را سنگینͬ هزینه و است طولانͬ و زمان بر امر ͷی تقلب کشف و شناسایی داده ها، تعداد زیاد بسیار حجم
تعداد و تراکنش ها انبوه حجم وجود با ͬ رسد. م نظر به ضروری ماشین، یادگیری روش های از استفاده مالͬ بی نظمͬ و تقلب شناسایی
بردار ماشین مدل از پژوهش این در ͬ شود. م توصیه هستند قوی تری مدل های که ترکیبی روش های از استفاده غیرقانونͬ تراکنش های کم
سپس و ͬ شود م گرفته بهره اعتباری کارت های در تقلب طبقه بندی و کشف برای است نوین رویͺرد ͷی که ترکیبی صورت به پشتیبان
استفاده اروپایی بانک ͷی داده های از مدل، عملͺرد نمایش منظور به ͬ گیرد. م صورت مدل این مختلف هسته های عملͺرد بین مقایسه ای
دیͽر هسته های با مقایسه در گاوسͬ هسته با ترکیبی پشتیبان بردار ماشین مدل بالاتر کارایی و دقت از حاکͬ پژوهش نتایج است. شده

است.

پیش گفتار .١
بانکͬ تراکنش های انجام برای بالایی سرعت از که است اعتباری کارت های از استفاده پرداخت روش های پرکاربردترین از ͬͺی امروزه
کارت های از استفاده زمینه در حال این با ͬ شوند. م محسوب ͷترونیͺال تجارت توسعه ابزارهای مهم ترین از ͬͺی و ͬ باشند م برخوردار
بسیار هدف ͷی بانکͬ کارت های است. بانکͬ کارت های از تقلب مهم چالش های این از ͬͺی که دارد وجود چالش هایگوناگونͬ بانکͬ
که حالͬ در کنند برداشت پول توجهͬ قابل مقدار بسیارکوتاهͬ زمان در ͬ توانند م آن ها زیرا هستند متقلبان سودجویی برای ارزش با و مهم
ماشین یادگیری و ١ داده کاوی بر مبتنͬ مدل های تکنولوژی پیشرفت با ͬ شوند. م شناسایی و کشف بعد، روزهای در برداشت ها این اغلب
در تقلبی تراکنش های شناسایی پژوهش، این در .[۴،٢] است جلبکرده خود به مختلف زمینه های در را پژوهش گران از بسیاری توجه ٢

مبتنͬ ترکیبی روش های از مالͬ بی نظمͬ کشف و تراکنش ها این شناسایی منظور به و است قرارگرفته مطالعه مورد اعتباری کارت های
با ͬ تواند م به خوبی و ͬ باشد م ساده پشتیبان بردار ماشین پیاده سازی که آن جایی از است. شده استفاده (SVM) ٣ پشتیبان بردار ماشین بر
ترکیبی ایده از مشͺل این حل برای نیست. برخوردار مناسبی عملͺرد از روش این داده ها حجم افزایش با اما ببیند، آموزش کم داده های
قوی تر مدل های تشͺیل سبب که ͬ شود م گرفته بهره یͺسان) اندازه با جایͽذاری با تصادفͬ به طور داده ها (تقسیم بندی ۴ استرپ بوت

.[۵] ͬ شود م مدل کارایی و دقت افزایش موجب امر این که شد خواهد
طبقه بندی. پشتیبان، بردار ماشین تقلب، کشف کلیدی: واژه های

.68T05, 05C85 :[٢٠١٠] موضوعͬ طبقه بندی
1Data Mining
2Machine Learning
3Support Vector Machine
4Bootstrap
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مالͬ پرداخت سرویس های در کلاهبرداری کشف برای ترکیبی پشتیبان بردار ماشین بر مبتنͬ رویͺردی

نظری مبانͬ .٢
به نسبت داده ها روی بهتری جداسازی که است ماشین یادگیری الͽوریتم های پرطرفدارترین از ͬͺی SVM پشتیبان: بردار ماشین مدل
قابل داده های برای خطͬ SVM دارد. وجود غیرخطͬ و خطͬ صورت دو به SVM دسته بند دارد. دسته بندی مسائل در روش ها سایر
نمود. استفاده خطͬ مدل از ͬ توان نم آن ها طبقه بندی جهت داده ها، از بسیاری ماهیت به توجه با طرفͬ از و ͬ رود م کار به خطͬ ͷتفکی
ͬ گیرند. م قرار استفاده مورد غیرخطͬ جداسازی مسائل در ۵ هسته توابع گرفت. بهره ͬ توان م غیرخطͬ SVM مدل از مواقعͬ چنین در
خوب عملͺرد همچنین و پیچیده یا ساده مدل های برای خوب عملͺرد قوی، نظریه ی ساده، آموزش به ͬ توان م SVM مدل مزایای ازجمله

است. (١) بهینه سازی مسئله حل روش این هدف نمود. اشاره کم، آموزشͬ داده های تعداد با
min
γ,w,b

١
٢ ∥w∥+ C

m∑
i=١

ξi,

y(i)
(
wTx(i) + b

)
⩾ ١ − ξi, i = ١, ...,m,

ξi ⩾ ٠, i = ١, ...,m.

(١)

:[١] نمود استفاده (٢) رابطه طبق آن دوگان فرم از ͬ توان م دیͽر، شͺل به
max
α

W (α) =
m∑
i=١

αi − ١
٢

m∑
i,j=١

y(i)y(j)αiαj

⟨
x(i), x(j)

⟩
,

٠ ⩽ αi ⩽ C, i = ١, ...,m,
m∑
i=١

αiy
(i) = ٠,

(٢)

اصلͬ نتایج .٣
ͬ شود. م تقسیم مرحله دو به پژوهش این در پیشنهادی مدل فرآیند

تعداد این از که است تراکنش ٢٨۴٨٠٧ شامل اروپایی بانک داده مجموعه نمونه های تعداد داده ها: متوازن سازی و کردن نرمال اول، گام
صورت به X داده مجموعه است. داده ها در شدید توازن عدم از نشان که دارند غیرقانونͬ برچسب تراکنش ۴٩٢

ͬ باشد م غیرقانونͬ تراکنش yi = ١ و قانونͬ تراکنش yi = ٠ آن در که ،X =
{
(xi, yi) |xi ∈ Rd, yi = ١, ٠ i = ١, ..., n}

سپس مقياس بنديكرد. [٠, ١] یا [−١, ١] محدوده در را ويژگͯ هر ͬ توان م داده ها نرمال سازی و مقیاس بندی جهت بͽيريد. نظر در را
تصادفͬ به طور قانونͬ، تراکنش ٢٨۴٣١۵ بین از که صورت این به ͬ شود. م گرفته بهره نمونه  برداری روش از داده ها کردن متوازن برای

شود. تشͺیل متوازن داده مجموعه تا ترکیبکرده غیرقانونͬ تراکنش های با و انتخاب را تراکنش ۴٩٢
داده های سپس و ͬ شود م تقسیم آزمایشͬ و آموزشͬ داده های بخش دو به X مجموعه ی آموزش: و پارامترها بهینه سازی دوم، گام
افرازبندی استرپ بوت روش از استفاده با ،Aj = {A١, A٢, A٣, ..., AN} , j = ١, ٢, ..., N زیرمجموعه N به آموزشͬ
انتخاب آن ها بهترین و تنظیم پشتیبان بردار ماشین مدل پارامترهای اعتبارسنجͬ، روش به ابتدا مدل ساخت برای سپس شد. خواهند
هر ازای به و ͬ شود م انتخاب پارامترها مقادیر از شبͺه ͷی ابتدا که ͬ شوند م محاسبه شͺل این به دسته بندی بهینه ی پارامترهای ͬ شود. م
نقطه ی در پارامتر عملͺرد ارزیابی برای متقابل اعتبارسنجͬ روش از سپس شد. خواهند مقداردهͬ مدل این پارامترهای شبͺه، این از نقطه
تقسیم مساوی قسمت K به جایͽذاری، با و تصادفͬ به طور آموزشͬ داده های متقابل، اعتبارسنجͬ روش در ͬ شود. م گرفته بهره مذکور
از بعد ͬ سازند. م را مدل زیرنمونه ها بقیه  ی و ͬ شود م حفظ مدل آزمایش برای اعتبارسنجͬ داده های به عنوان ͬͺی زیرنمونه ها، از ͬ شوند. م
فرآیند شبͺه، نقطه ی هر ازای به ترتیب این به ͬ شود. م کارگرفته به شده ساخته مدل اعتبار میزان برای آزمایشͬ زیرنمونه ی مدل، ساخت
به دست معیارهای میانگین از انتها در ͬ شود. م سنجیده نقطه آن عملͺرد معیار بار هر در و ͬ شود م تکرار بار K متقابل، اعتبارسنجͬ

5Kernel functions
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ابتیاع م. ابتیاع، م.

تولیدکرده را اعتبار بهترین که نقطه ای مذکور، شبͺه ی مختلف نقاط میان در ͬ شود. م برده بهره نقطه آن اعتبار میزان سنجش برای آمده
روی پشتیبان بردار ماشین الͽوریتم پارامترها، بهترین انتخاب از بعد نهایت در ͬ شود. م استفاده اصلͬ مدل پارامتر های به عنوان است
داده های از بخشͬ کدام هر که ͬ آید م به دست دسته بند مدل N انتها در ͬ شود. م ساخته دسته بند نهایی مدل و اعمال Aj مجموعه ی
هرکدام کلاس تا ͬ شود م انجام رأی گیری آزمایشͬ داده های روی مدل ها این بین روش، ارزیابی برای اکنون مشاهدهکرده اند. را آموزشͬ
از هرکدام توسط آن ها کلاس و ͬ شوند م ارائه مدل N به آزمایشͬ داده های از ͷی هر که معنا این به شود. پیش بینͬ آزمایشͬ داده های از
انجام با ͬ شود. م مشخص داده آن نهایی پیش بینͬ و صورتگرفته رأی گیری ͬ ها پیش بین این بین نهایت در ͬ شود. م پیش بینͬ دسته بندها

سنجید. را روش عملͺرد و داد انجام مقایسه آزمایشͬ داده های واقعͬ کلاس و کلاس پیش بینͬ بین ͬ توان م این کار
به ساخته شده پشتیبان بردار ماشین مدل سپس و شده پیاده سازی [٣] اروپایی بانک داده  مجموعه روی بر پیشنهادی مدل پژوهش این در

شد. خواهد ارزیابی زیر پارامترهای و ۶ درهم ریختگͬ ماتریس ͷکم
ͯ باشد: م غیرقانونͬ و قانونͬ تراکنش های كلͯ دسته بندي در مدل توانايي و مدل کلͬ دقت نشان دهنده ،(ACC) ٧ دقت معیار .١

ACC =
TP + TN

TP + TN + FP + FN
.

ͬ باشد: م غیرقانونͬ تراکنش های برای شده انجام صحیح ͬ های پیش بین نشان دهنده ،(PPV) ٨ مثبت پیش گویی کننده ارزش معیار .٢

PPV =
TP

TP + FP
.

صحیح پیش بینͬ نسبتͬ چه به که ͬ کند م مشخص صحیح، قانونͬ غیر تراکنش های پوشش یا (TPR) ٩ صحیح مثبت نرخ معیار .٣
است: صورتگرفته

TPR =
TP

TP + FN
.

به دیͽری معیار از پس ͬ شود، م بالعکس و دیͽری کاهش باعث ͬͺی افزایش و هستند یͺدیͽر عکس (٣) و (٢) معیارهای چون .۴
شود: ارزیابی مدل کلͬ عملͺرد تا است (٣) و (٢) معیار میانگین که ͬ شود م استفاده (F1-Score) F1 معیار نام

F١ − Score =
٢TP

٢TP + FP + FN
.

دسته بند مدل خوب عملͺرد از نشان باشند، نزدیͷ تر ͷی به مقادیر چه هر که ͬ باشد م ͷی و صفر بین فوق، معیارهای تمامͬ مقیاس
ͬ شود. م مشاهده (١) جدول در مدل سازی از حاصل نتایج است.

پژوهش دست آورد های .۴
چندجمله ای هسته و ١١ سیͽمویید هسته به نسبت بهتری عملͺرد معیارها تمام در ١٠ گاوسͬ هسته با ساده SVM ،(١) جدول به توجه با
نسبت را بهتری عملͺرد پارامترها همه در گاوسͬ هسته با مدل این و ͬ شود م دیده مشابهͬ نتایج نیز ترکیبی SVM عملͺرد در دارد. ١٢

باعث که است برخوردار مناسب تری تعمیم پذیری و بالاتر دقت از گاوسͬ هسته با SVM گفت، ͬ توان م لذا دارد. هسته ها دیͽر به
6Confusion Matrix
7Accuracy
8Positive Predictive Value
9True Positive Rate

10Gaussian Kernel
11Sigmoidal Kernel
12Polynomial Kernel
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مالͬ پرداخت سرویس های در کلاهبرداری کشف برای ترکیبی پشتیبان بردار ماشین بر مبتنͬ رویͺردی

ترکیبی و ساده پشتیبان بردار ماشین از حاصل نتایج :١ جدول
ارزیابی مدل های

ACC PPV TPR F١-Score هسته مدل
٠/۵ ٠/۶ ٠/٩۴ ٠/٧٧ چندجمله ای

ساده پشتیبان بردار ٠/۵۵ماشین ٠/۶۴ ٠/٩۴٣ ٠/٧٣ سیͽمویید
٠/٧ ٠/٧١ ٠/٩۵ ٠/٨۵ گاوسͬ

٠/۵۴ ٠/۶١ ٠/٩٣ ٠/٧٩ چندجمله ای
ترکیبی پشتیبان بردار ٠/۵٧ماشین ٠/٧٠۵ ٠/٨٧ ٠/٧۶ سیͽمویید

٠/٧۶۵ ٠/٧٣٣ ٠/٩۶ ٠/٨٨ گاوسͬ

هسته با ساده SVM به نسبت نیز گاوسͬ هسته با ترکیبی SVM همچنین شد. خواهد تراکنش ها درست تر پیش بینͬ و دقیق تر طبقه بندی
است. ساده مدل به نسبت پیشنهادی ترکیبی مدل برتری نشان دهنده این که ͬ باشد م دارا را بهتری نتایج گاوسͬ

جنگل روش از برگرفته و ماشین یادگیری نوین روش های از که ترکیبی SVM رویͺرد از استفاده با تا است شده تلاش پژوهش این در
ͬ باشد م قوی دسته بندهای جزو SVM که جایی آن از شود. ارائه مالͬ تراکنش های طبقه بندی جهت کارا مدلͬ است، (RF) ١٣ تصادفͬ
رویͺرد این نتایج آورد. وجود به بیشتری تعمیم پذیری و بالاتر دقت با مدل هایی ͬ توان م SVM مدل پایه ی بر ترکیبی روش ͷکم با

است. ترکیبی دسته بندهای بیشتر کارایی نشان دهنده

سپاس گزاری
داریم. را تشͺر کمال نموده اند یاری را ما مقاله این تهیه در که اساتیدی از
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

واکنش‐انتشار جزئͬ دیفرانسیل معادله پارامتر تخمین مسأله حل بر مروری
خدایی فر سلمان اصل، ندایی خدیجه رزاقͬ، یاسمن

تجربی دادە های از باید و هستند ناشناخته اغلب اما دارند، جالبی علمͬ تفسیرهای جزئͬ دیفرانسیل معادلات پارامترهای چͺیده.
معادله پارامتر تخمین برای سپس و داده شرح را جزئͬ دیفرانسیل معادلات در پارامتر تخمین مسائل مقاله این در شوند. زده تخمین
حل برای کاهش تندترین روش از و جزئͬ دیفرانسیل معادله گسسته سازی برای متناهͬ عناصر روش از واکنش‐انتشار جزئͬ دیفرانسیل

ͬ کنیم. م استفاده بهینه سازی مسأله

پیش گفتار .١
پدیده های از بسیاری پارامترهای دارند. زیستͬ و شیمایی ،ͬͺفیزی پدیده های توصیف در فراوانͬ کاربردهای جزئͬ دیفرانسیل معادلات
در که ͬ شود م پارامتر تخمین مسائل به منجر پارامتر ها این از تقریب ارائه است. آن ها از تقریبی ارائه به نیاز و نیستند مشخص ͬͺفیزی
مسائل اغلب این که به باتوجه .[۴] ͬ شوند م شناخته جزئͬ دیفرانسیل معادلات قیود با بهینه سازی مسائل عنوان با مسائل این کلͬ حالت
سه به ،ͬͺفیزی سیستم های علمͬ مطالعه ی است. موثر مسائل این حل پیش برد در عددی روش های پیاده سازی ندارند، تحلیلͬ راه حل

ͬ شود: م تقسیم بخش
کند، مدل بندی کامل طور به را سیستم بتواند که طوری به کمینه مجموعه ی یافتن سیستم: پارامتریکردن الف.

از بعضͬ برای نتیجه یا پیش بینͬ برای مدل شده داده مقادیر برای بتواند که طوری به ͬͺفیزی قوانین یافتن مستقیم: مد ل بندی ب.
داد، ارائه مشاهده قابل پارامترهای

.[۵] مدل پارامترهای واقعͬ مقادیر استنباط برای پارامترها از بعضͬ مقادیر از استفادهکردن وارون: مدل بندی ج.
پایه بر ضرایب تخمین یا بازیابی عنوان به که ͬ گیرند م قرار وارون مسائل رده بندی در جزئͬ دیفرانسیل معادلات پارامتر تخمین مسائل
مسائل حل برای بهینه سازی روش های از استفاده رهیافت ͬ شوند. م بیان جزئͬ دیفرانسیل معادله از شده اندازه گیری داده های سری ͷی

به صورت را Ω = [٠, ٢[١ ناحیه در دیریلͺه مرزی شرط با واکنش‐انتشار جزئͬ دیفرانسیل معادله .[١] است پارامتر ∇−تخمین · (m∇u)(x) + v⃗ · ∇u(x) = f(x), x ∈ Ω,

u(x) = ٠, x ∈ Γ,
(١)

است، m ∈ L∞(Ω) بازیابی هدف ͬ شود، م شناخته زیرزمینͬ آب جریان یا رسانایگرما مسأله عنوان به که مسأله این ͬ گیریم. م نظر در
با برابر واقعͬ m و f = ١ تابع اگر حال ͬ کنیم. م مشخص ud با را اندازه گیری شده داده های

mt(x, y) =

۴, (x, y) ∈
√

(x− ١
٢(٢ + (y − ١

٢(٢ ≤ ١
۵

٢
,

٨, ,سایرجاها
پارامتر. تخمین بهینه سازی، وارون، مسائل جزئͬ، دیفرانسیل معادلات کلیدی: واژه های

.35R30, 49N45 :[٢٠١٠] موضوعͬ طبقه بندی
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واکنش‐انتشار جزئͬ دیفرانسیل معادله پارامتر تخمین مسأله حل بر مروری

ͬ کنیم. م بررسͬ [٧] از استفاده با را (١) مدل حل روند باشد،
و گسسته سازی برای انتخابی روش است، بهینه سازی روش های از استفاده (١) پارامتر تخمین مسأله حل برای انتخاب شده رهیافت
نامشخص به توجه با ͬ گردد. م انجام پایتون در [٣] فنیͺس کتابخانه از استفاده با که [۶] است متناهͬ عناصر جزئͬ، دیفرانسیل معادله حل
توجه با انجامگردد. جزئͬ دیفرانسیل معادله گسسته سازی تا دارد وجود mi مناسب اولیه مقدار ͷی به نیاز ،(١) مدل در m ضریب بودن
از استفاده با داده ها به سپس و کرد حل mt با ابتدا را جزئͬ دیفرانسیل معادله ͬ توان م است، شده مشخص mt مدل این در این که به
روش های پارامتر، تخمین مسأله حل رهیافت ساخت. را ud شده اندازه گیری داده های مدل، این در و واردکرد اختلال آماری توزیع های
مسأله تبدیل و هدف تابع مشتق محاسبه به نیاز که کاهش تندترین روش برپایهگرادیان، روش های از استفاده با بنابراین است، بهینه سازی

.[٢] ͬ کنیم م استفاده لاگرانژین) (تابع الحاق روش از است نامقید مسأله به بهینه سازی مقید
ͬ کنیم: م بررسͬ را (١) مدل حل برای لازم گام های

باشد: مقدار کمترین (مشاهدات) ud و u بین فاصله که به گونه ایست m یافتن هدف : بهینه سازی مسأله نوشتن .١
min
m

J(m) =
١
٢
∫
Ω
(u− ud)

٢dx+
γ

٢
∫
Ω
|∇m|٢dx,

s.t. ∇ · (m∇u)(x) + v⃗ · ∇u(x) = f(x), x ∈ Ω,

u(x) = ٠, x ∈ Γ.

(٢)

انتخاب با متناهͬ عناصر روش از استفاده با را (١) جزئͬ دیفرانسیل معادله جواب : جزئͬ دیفرانسیل معادله ضعیف فرم نوشتن .٢
ͬ نویسیم: م را معادله ضعیف فرم بنابراین ͬ زنیم. م تقریب ،ϕ ∈ H١٠ (Ω)

⟨−∇ · (m∇u) + v⃗ · ∇u, ϕ⟩ = ⟨f, ϕ⟩,

⟨−∇ · (m∇u), ϕ⟩+ ⟨v⃗ · ∇u, ϕ⟩ = ⟨f, ϕ⟩,

−⟨m∇u, ϕ⟩+ ⟨v⃗ · ∇u, ϕ⟩ = ⟨f, ϕ⟩.

(٣)

به صورت لاگرانژین تابع بنابراین است، m ∈ L∞(Ω) ،(١) مدل تعریف طبق لاگرانژین: تابع .٣
L : L∞(Ω)×H١٠ (Ω)×H١٠ (Ω) → R,

L(m,u, p) :=
١
٢⟨u− ud, u− ud⟩+

γ

٢ ⟨∇m,∇m⟩+ ⟨m∇u,∇p⟩+ ⟨v⃗∇u, p⟩ − ⟨f, p⟩,

ͬ شود، م تعریف
Lp(m,u, p)(p̃) = ⟨m∇u, p̃⟩+ ⟨v⃗∇u, p̃⟩ − ⟨f, p̃⟩ = ٠,
Lu(m,u, p)(ũ) = ⟨m∇u,∇ũ⟩+ ⟨u− ud, ũ⟩+ ⟨v⃗∇ũ, p⟩ = ٠,
Lm(m,u, p)(m̃) = γ⟨∇m,∇m̃⟩+ ⟨m̃∇u, p⟩ = ٠.

محاسبه m به نسبت را J(m) هدف تابع لذاگرادیان است، m تابع ،(٢) بهینه سازی مسأله متغیر : هدف تابع گرادیان محاسبه .۴
با برابر که ͬ کنیم م

⟨g, m̃⟩ := G(m)(m̃) = γ⟨∇m,∇m̃⟩+ ⟨m̃∇u, p⟩,

ͬ بریم کارم به را است، β پی یافتن در که c ثابت آرمیجو١با خطͬ جستجوی با کاهش تندترین روش
J(m− βg) ≤ J(m)− βc⟨g, g⟩,

است. |gn|
|g٠| ≤ τ توقف شرط الͽوریتم دراین که

1 Armijo
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خدایی فر س. اصل، ندایی خ. رزاقͬ، ی.

از حاصل اولیه داده های بر اختلال اعمال با را شده اندازه گیری داده های مسأله این در (مشاهدات): شده اندازه گیری داد ه های .۵
این صورت در بنامیم ut را حاصل داده های و کنیم حل mt با را مسأله اگر ͬ سازیم. م مسأله حل

ud = ut + η, η ∼ N(٠, σ٢).

ͬ دهیم. م انجام لاپلاس توزیع از استفاده با را داده ها بر اختلال مسأله این درحل
تابع محاسبه و جزئͬ دیفرانسیل معادله حل گام اولین m برای اولیه مقدار تعریف با است، مجهول مسأله در m این که به باتوجه .۶

ͬ شود. م انجام هدف

عددی نتایج .٢
پارامتر تخمین مسأله حل به بخش این در

min
m

J(m) =
١
٢
∫
Ω
(u− ud)

٢dx+
١ × ١٠−۵

٢
∫
Ω
|∇m|٢dx,

s.t. ∇ · (m∇u)(x) = ١, x ∈ Ω,

u(x) = ٠, x ∈ Γ,

(۴)

توزیع از استفاده با را α = ٠٫٠١ اختلال سپس حلکرده، را (۴) مسأله قید mt با ابتدا ͬ پردازیم. م α = ٠٫٠١ اختلال و mi = ۴ با
.(١ (شͺل ͬ نامیم م ud را آن و ͬ کنیم م وارد داده ها به لاپلاس

ud (ب) u (آ)

.(۴) مسأله ud و u :١ شͺل

صدق همͽرایی شرط در مساله تکرار، ٢٨۵ از پس ͬ آوریم. م به دست را u تابع ،mi = ۴ اولیه مقدار از استفاده با بعدی گام در
.(٢ (شͺل ͬ کنیم م رسم را بازیابی شده نهایی m و mt پایان در ͬ رسد، م پایان به الͽوریتم اجرای و کرده
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واکنش‐انتشار جزئͬ دیفرانسیل معادله پارامتر تخمین مسأله حل بر مروری

m (ب) mt (آ)

بازیابی شده نهایی m و mt :٢ شͺل
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

فازی رویͺرد با پرتابͽر حرکت دیفرانسیل معادلات دستگاه عددی حل

آخوندزاده علͬ مقدس، محمد سرآبادان، سعید

بعد دهیم. قرار بحث مورد فازی رویͺرد با را پرتابͽرها حرکت دیفرانسیل معادلات دستگاه عددی حل داریم قصد مقاله این در چͺیده.
درون یابی روش مقاله، این در زد. تقریب مناسبی صورت به را آنها بتوان باید پرتابͽرها نوسانͬ پارامترهای تعیین و مسئله مدل بندی از
روش، این در است. شده ارائه داده ها فضایی ساختار و مختصات گرفتن نظر در با و شعاعͬ پایه تابع شبͺه تعمیم از استفاده با نوینͬ
استفاده اوزان ضرایب ماتریس حل برای پنهان، واحد مختصاتگره های تصحیح، انتقال توابع از متشͺل انتقال توابع تعمیم یافته ماتریس
دستگاه فازی، نسبی دیفرانسیل معادلات حل روش از استفاده با ادامه در ͬ شود. م انجام شبͺه از نقطه هر در درون یابی پایان در و
نتایج با را پیشنهادی روش نتایج پایان در است. شده حل سنتͬ روش های با قبلا́ که خواهیمکرد حل را پرتابͽرها حرکت نسبی معادلات

خواهیمکرد. مقایسه مرسوم روش های دیͽر

مقدمه .١

نوسانات تعیین است. کانتینر و کج سͺوی خودرو، شاسͬ شامل که است پرتابͽر از ͷموش پرتاب پرکاربرد، دفاعͬ ابزارهای از ͬͺی
پرتابͽر وسیله پایداری پدیده، این است. دار شیب  راکت پرتاب در مسائل مهمترین از ͬͺی ،ͷموش مسیر اولیه شرایط بر آنها تأثیرات و
توانسته اند پرتابͽر بر وارده گشتاورهای و نیروها تمام بررسͬ با [۵ ،۴] منابع در محققان ͬ دهد. م قرار تأثیر تحت را ͷشلی دقت و
برای کاربردی ابزار از ͬͺی (RBF)،شعاع١ͬ پایه تابع بر مبتنͬ شبͺه های کنند. فرمول بندی را آن و باشند داشته مسئله از دقیقͬ آنالیز
در .[٣] قرارگرفت استفاده مورد چندمتغیره درون یابی مسئله حل برای بار اولین برای شعاعͬ پایه توابع است. چندمتغیره توابع تقریب
پایه توابع عصبی، شبͺه های زمینه در است. عددی تحلیل و تجزیه در پژوهش اصلͬ های زمینه از ͬͺی یادشده مبحث حاضر، حال
به توابع از مجموعه ای صورت به عصبی، شبͺه های در پنهان واحدهای شد. کارگرفته به [١] لو٢ و برومهد توسط بار اولین برای شعاعͬ
هستند. شعاعͬ پایه توابع شبͺه ها، نوع این در استفاده مورد توابع ͬ شوند؛ م بیان تصادفͬ الͽوهای پایه بر ورودی بردارهای ترکیب منظور
ابزار مسائل این مدل سازی برای فازی ریاضیات و هستند نادقیق یا مبهم سیستم پارامترهای از برخͬ خطͬ، سیستم های از بسیاری در
بعد مقاله این در ͬ کند. م پیدا بیشتری اهمیت فازی دیفرانسیل معادله ͷی یا فازی خطͬ سیستم ͷی حل رو این از و است مناسب تری
معادلات دستگاه ادامه در و ͬ زنیم م تقریب RBF روش از استفاده با را آنها پرتابͽرها، نوسانͬ پارامترهای تعیین و مسئله مدل بندی از

خواهیمکرد. حل را فازی پارامترهای با پرتابͽرها حرکت نسبی

فازی. معادلات دستگاه فازی، دیفرانسیل معادلات شعاعͬ، پایه توابع پرتابͽر، حرکت دیفرانسیل معادلات دستگاه کلیدی: واژه های
.65P99, 35R13 :[٢٠١٠] موضوعͬ طبقه بندی

1Radial Basis Function
2Broomhead and Lowe
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فازی رویͺرد با پرتابͽر حرکت دیفرانسیل معادلات دستگاه عددی حل

شعاعͬ پایه توابع شبͺه .٢
که طوری به باشد موجود ϕ : [٠,∞] → R مانند متغیره ای ͷی تابع هرگاه ٣گوییم شعاعͬ تابع ͷی را Φ : Rd → R تابع .١ تعریف

Φ(x) = φ (||x||٢, ε) ,

است. شͺل پارامتر ε ∈ R و اقلیدسͬ نرم ∥.∥٢ ، x = (x١, x٢, ..., xd) که
تابع ͷی Φiها از ͷی هر و پایه ͷی B هرگاه گوییم شعاعͬ پایه ای توابع را B = {Φ١,Φ٢, ....,Φn} توابع مجموعه ی .٢ تعریف

باشد. شعاعͬ

شعاعͬ پایه توابع شبͺه ساختار .٢. ١
ابعاد دارای زیاد، وجودگره های با ورودی لایه است. خروجͬ و میانͬ ورودی، لایه سه شامل عصبی، شبͺه ͷی عنوان به ،RBF شبͺه
ورودی بردار فاصله ابتدا که است این ͬ گیرد، م صورت میانͬ لایه در که فرایندی و است Cn مرکز با nگره، دارای میانͬ لایه است. بالا
تبدیل دارای لایه آخرین ͬ شود. م داده عبور y خروجͬ لایه از حاصل عددی مقدار سپس و اعمال φ انتقال تابع محاسبه، متناظر مرکز از

است. میانͬ لایه مقادیر از خطͬ ترکیب ͷی که است خطͬ

فازی دیفرانسیل معادلات .٣
کند: صدق زیر شرایط در که است u : R → [٠, ١] مانند فازی مجموعه ͷی فازی عدد .٣ تعریف

باشد. نرمال فازی مجموعه ͷی u •
باشد. محدب فازی مجموعه ͷی u •

باشد. بالایی پیوسته نیم u •
باشد. فشرده Supp(u) •

صدق زیر خواص در که ٠ ≤ r ≤ ١ ،ū(r) و u(r) توابع از (u, ū) مانند زوج ͷی صورت به u فازی عدد پارامتری شͺل .۴ تعریف
ͬ کنند: م

است. پیوسته چپ از نزولͬ اکیدا تابعکراندار ͷی u(r) •
است. پیوسته راست از صعودی اکیدا تابعکراندار ͷی ū(r) •

.٠ ≤ r ≤ ١ ،u(r) ≤ ū(r) •
ماتریسͬ دستگاه .۵ تعریف

a١١ a١٢ · · · a١m
a٢١ a٢٢ · · · a٢m... ... . . . ...
am١ am٢ · · · amm

 ∗


x̃١١ x̃١٢ · · · x̃١n
x̃٢١ x̃٢٢ · · · x̃٢n... ... . . . ...
x̃m١ x̃m٢ · · · x̃mn

 =


b̃١١ b̃١٢ · · · b̃١n
b̃٢١ b̃٢٢ · · · b̃٢n... ... . . . ...
b̃m١ b̃m٢ · · · b̃mn

 , (١)

3Radial Function
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آخوندزاده ع. مقدس، م. سرآبادان، س.

معادلات دستگاه ͷی هستند، فازی اعداد ١ ≤ j ≤ n ،١ ≤ i ≤ m ،b̃ij و قطعͬ اعداد ١ ≤ i, j ≤ m ،aij که طوری به
داریم: ماتریس ها نمادگذاری از استفاده با ͬ شود. م گفته (FMES) ۴ فازی ماتریسͬ

AX̃ = B̃ (٢)

فازی اعداد ماتریس همچنین و

X̃ = (x̃ij) =
(
x̄ij(r), xij(r)

)
, ١ ≤ i ≤ m, ١ ≤ j ≤ n, ٠ ≤ r ≤ ١,

کند. صدق (٢) معادله در X̃ اگر ͬ شود گفته م (٢) معادله فازی ماتریسͬ معادله از جواب ͷی

فازی ماتریسͬ معادلات دستگاه حل .٣. ١
تبدیل قطعͬ ماتریسͬ دستگاه ͷی به را دستگاه ابتدا منظور این برای خواهیمکرد. بررسͬ را (١) فازی معادلات دستگاه جواب های اکنون
ͷی به را (١) ماتریسͬ دستگاه ابتدا، داد. خواهیم ارائه آن برای تقریب سه و کرده حل آن از استفاده با را فازی دستگاه سپس و کرده

ͬ کنیم. م تبدیل ماتریس ها ضربکرونکر برمبنای ماتریسͬ دستگاه
B = (bij) ∈ همچنین و X̃ = (x̃ij) =

(
xij(r), x̄ij(r)

)
∈ Rm×n و A = (aij) ∈ Rm×n کنیم فرض .([٢] ) ١ قضیه

صورت این در .Rm×n

vec(AX̃B) = (BT ⊗A)vec(X̃).

است. ضربکرونکر ⊗ و ستون هایش روی ماتریس، ͷی توسیع vec(·) که
جواب ͷی x̃ = vec(X̃) ∈ Emn اگر تنها و اگر است (١) فازی ماتریسͬ دستگاه جواب ͷی X̃ ∈ Em×n ماتریس .([٢] ) ٢ قضیه

باشد: زیر ماتریسͬ دستگاه

Gx̃ = ỹ, (٣)

است. فازی اعداد از بعدی mn بردار ͷی ỹ = vec(B̃) و mn×mn ماتریس ͷی G = In ⊗A آن در که
شود: داده توسیع زیر صورت به قطعͬ معادلات از دستگاه ͷی به ͬ تواند م (٣) فازی خطͬ دستگاه .١ نکته

g١١ g١٢ g١p
g٢١ g٢٢ · · · g٢p... ... . . . ...
gp١ gp٢ · · · gpp




x١
x٢...
xp

 =


ỹ(١)١
ỹ(١)٢...
ỹp(١)

 ,

با است معادل فوق دستگاه که
p∑

i=١

p∑
j=١

gij (xi − αj(r), xi + αj(r)) =
(
y
i
(r), ȳi(r)

)
,

هستند. مشخصͬ توابع i = ١, ..., p ،αi(r) و i = ١, ..., p ،y
i
(١), ȳ

i
(١) ∈ R که طوری به

4Fuzzy Matrix Equation System
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فازی رویͺرد با پرتابͽر حرکت دیفرانسیل معادلات دستگاه عددی حل

راکت پرتابͽر کلͬ ͬͺدینامی معادلات .۴
است، شده تشͺیل ١ شͺل مانند سخت بدنه ای بر پرتابͽر و راکت اتصال از که است شده بررسͬ نوسان داری دستگاه مقاله، این در
شاسͬ اصلͬ، جزء دو دارای پرتابͽر وسیله خلاصه، طور به شده اند. وصل هم به کشسان عناصر به وسیله دستگاه این اجزای همچنین
کانتینر ͷی دارای (معمولا˟ کج سͺوی و داد) انتقال دیͽر مͺان به مͺانͬ از را راکت و پرتابͽر بتوان تا ͬ آورد م فراهم را امͺان (این خودرو
وابسته ثابت (نقطه OT :(١ (شͺل دارد وجود مشخصه نقطه شش پرتاب)، حال در (راکت پرتابه سیستم در است. است) راکت برای
صفحه و کج سͺوی چرخان میله تلاقͬ (نقطه Oη چرخان)، محافظ جرم (مرکز Opi نقلیه)، وسیله شاسͬ جرم (مرکز Os زمین)، به

پرتاب). حال در راکت جرم (مرکز OR کج)، سͺوی جرم (مرکز OB پرتاب)، حال در وسیله عمودی

راکت. پرتابͽر محاسبات نمودار :١ شͺل

پرتابه سیستم حرکت معادلات ماتریسͬ فرم .١ .۴
با ͬ توان م را پرتابͽر حرکت مستقل ͬͺدینامی متغیرهای ͬ دهیم. م ارائه را پرتابه سیستم حرکت ͬͺدینامی معادلات ماتریسͬ فرم اکنون

:[۵] داد نشان زیر ستونͬ بردار

X۶×١ = [s φy φz zs γx γy]
T ,

شاسͬ)، چرخشͬ (حرکت شاسͬ دوران میزان γx شاسͬ)، قوسͬ (حرکت شاسͬ دوران میزان γy شاسͬ، انتقال میزان zs آن در که
این در است. راکت انتقال میزان s و سͺو) قوسͬ (حرکت کج سͺوی دوران φy عمودی)، محور حول (دوران کج سͺوی دوران φz

داشت: زیر صورت به را پرتابͽر حرکتͬ مؤلفه های شامل دوم مرتبه دیفرانسیلͬ معادلات دستگاه ماتریسͬ شͺل ͬ توان م صورت
Ẍ۶×١ = B۶×۶ · Ẋ۶×١ + C۶×۶ ·X۶×١ +N۶×١۵ · ξ١۵×١ + F۶×٣ · Φ١×٣, (۴)

،X مجهول متغیرهای ضرایب ماتریس C۶×۶ = (ci,j)i,j=١,۶ ،Ẋ۶×١ اولیه سرعت ضرایب ماتریس B۶×۶ آن در که طوری به
است: زیر متغیر مجهولات غیرخطͬ ترکیب ضرایب ماتریس N۶×١۵ = (ni,j)i,j=١,١۵

(۵)
ξ١۵×١ =

[
γ̇٢
x γ̇٢

y γ̇xẏy φ̇٢
y φ̇٢

z φ̇yφ̇z γ̇xφ̇y γ̇xφ̇z γ̇yφ̇y γ̇yφ̇z ṡγ̇x ṡγ̇y ṡφ̇y ṡφ̇z µ
√

F ٢
Ry + F ٢

Rz

]T
.

ͬ کنند: م اثر زیر دستگاه بر که که است خارجͬ نیروهای ماتریس F۶×٣ = (fi,j) i=١,۶
j=١,٣

همچنین،

Φ١×٣ = [g T Fjet]
T . (۶)
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آخوندزاده ع. مقدس، م. سرآبادان، س.

عنصر دومین وزن، نیروی با متناظر عنصر اولین بردار این در ͬ شود. م استفاده دستگاه حرکت بر خارجͬ نیروهای اثر بیان برای (۶) بردار
است. راکت جت نیروی با متناظر آخر عنصر و راکت فشار با متناظر

در بحث، مورد دستگاه حل برای شود. استفاده شده توصیف پرتابͽر شبیه پرتابͽری وسیله هر برای ͬ تواند م شده بیان ریاضͬ مدل
این برای داد. کاهش اول مرتبه دیفرانسیلͬ معادلات از دستگاه ͷی به را (۵) دوم مرتبه دیفرانسیلͬ معادلات شامل دستگاه باید ابتدا

ͬ کنیم: م تعریف را زیر متغیرهای منظور
vs = ṡ, vzs = żS , ωφy = φ̇y, ωφz = φ̇z, ωγx = γ̇x, ωγy = γ̇y. (٧)

داد: نمایش زیر صورت به ͬ توان م را مجهول متغیرهای بردار ،(٧) روابط با شده تعریف جدید متغیرهای از استفاده با
X١×١٢ =

[
vs ωφy ωφz vzS ωγx ωγy s φy φz zS γx γy

]T
. (٨)

مرتبه دیفرانسیلͬ معادلات شامل جدید ماتریسͬ شͺل ͬ توان م (۴) رابطه همچنین و (٨) بردار و جدید متغیرهای از استفاده با حال
نوشت: زیر به صورت را اول

Ẋ١×١٢ = P١٢×١٢ ·X١×١٢ +Q١×١٢۵ · ξ١۵×١ +R٣×١٢ · Φ١×٣, (٩)
آن در که

P١٢×١٢ =

[
B۶×۶ C۶×۶
I۶×۶ O۶×۶

]
, Q١×١٢۵ =

[
N۶×١۵
O۶×١۵

]
, R٣×١٢ =

[
F۶×٣
O۶×٣

]
,

هستند تصادفͬ ماتریس هایی بلوک ها باقͬ شد بیان این از قبل که همانطور و صفر ماتریس های O۶×٣ و O۶×١۵ ،O۶×۶ که طوری به
ͬ شوند. م وارد پرتابͽر بر پرتاب حین که هستند تصادفͬ مقادیری آنها درایه های که

عددی نتایج .۵
دستگاه فازی حل روش بخش این در ͬ کنیم. م حل ٣ بخش در شده ارائه روش و شعاعͬ پایه توابع روش وسیله به را (٩) دستگاه اکنون
همچنین شده اند. محاسبه متمتیͺا افزار نرم توسط شده ارائه عددی نتایج تمام ͬ کنیم. م مقایسه شبͺه بدون و شبͺه روش های با را (٩)

شده اند. تولید RandomReal[0,0.5] دستور توسط R٣×١٢ و Q١×١٢۵ ،P١٢×١٢ ماتریس های روش ها تمامͬ در

.t = ٠٫۵ برای مختلف روش های از استفاده با نتایج مقایسه :١ جدول
FMES RBF-FD RBF FDM Xi

−١٫۴٧٨٠ −٠٫٧۶۵٠ −٠٫٩۵۶٣ −٢٫٠٠٠١ X١
٠٫١٣٢۵ ٠٫١١٩٨ ٠٫١۵۶٧ ٠٫٣٩٩٩ X٢
٠٫٠٠٠٠ −٠٫٠٠۵۴ −٠٫٠٠۶۵ −٠٫٠١٩٠ X٣
−٠٫١٠٢٧ −٠٫٠٧٧۶ −٠٫١٠١١ −٠٫١۶۶۶ X۴
٠٫٠١٢٩ ٠٫٠۴٠٠ ٠٫٠۶۵۵ ٠٫٠٧٩۵ X۵
−٠٫٠٣٧۴ −٠٫٠٢٠١ −٠٫٠٣۴٠ −٠٫٠۵۶١ X۶
−٠٫٠١٩۵ −٠٫٠٠٩٨ −٠٫٠١٢١ −٠٫٠٢٣١ X٧
−٠٫١۵۴١ −٠٫٠٣۴١ −٠٫٠۶٠٢ −٠٫٠٩٩٠ X٨
٠٫٠٧٢۵ ٠٫٠۶١۴ ٠٫٠٧٠٠ ٠٫٠٨٠٨ X٩
٠٫٠۶٠٨ ٠٫٠۴۴٠ ٠٫٠۵٠٢ ٠٫٠٨۶١ X١٠
٠٫١٠٢۵ ٠٫٠٣٨۴ ٠٫٠۴٠٧ ٠٫٠٩٠٢ X١١
٠٫٠٣۶۵ ٠٫٠١٨٩ ٠٫٠٢۵۵ ٠٫٠٣۵٧ X١٢
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فازی رویͺرد با پرتابͽر حرکت دیفرانسیل معادلات دستگاه عددی حل

فضای بعد همچنین شده اند. نظرگرفته در εi = ١ ثابت پارامتر با i = ١, ..., n هر برای و مͺعبی چند را شعاعͬ پایه  تابع همچنین
روش های با مقایسه در را FMES پیشنهادی روش نتایج ١ جدول است. شده فرض ۶ برابر الͽوریتم ها همه ی در شعاعͬ پایه  توابع
ͬ دهد. م نمایش (RBF-FD) متناهͬ شعاعͬ‐تفاضل پایه تابع یافته تعمیم رویͺرد و شعاعͬ پایه توابع روش ،(FDM) محدود تفاضل
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

دو کسری جزئͬ دیفرانسیل معادلات دستگاه جواب تقریب برای فیبوناتچͬ هم مͺانͬ روش
بعدی

بابلیان اسمعیل مشهودی، شاهد

کسری جزئͬ دیفرانسیل معادلات دستگاه حل برای فیبوناتچͬ جمله ای های چند اساس بر هم مͺانͬ روش ͷی مقاله، این در چͺیده.
از استفاده با سپس و ͬ شود م داده بسط فیبوناتچͬ چندجمله ای های حسب بر مجهول تابع روش، این در است. شده ارائه (FPDEs)
حل با آخر، در ͬ شود. م تبدیل خطͬ جبری معادلات از مجموعه ای به کسری جزئͬ دیفرانسیل معادلات دستگاه ͷی هم مͺانͬ، روش

است. شده بررسͬ عددی مثال ͷی در پیشنهادی روش کارایی همچنین ͬ آید. م به دست تقریبی جواب حاصل، دستگاه

پیش گفتار .١
طور به .([١] منبع (مثلا دارد مهمͬ نقش مهندسͬ و علوم مختلف های زمینه در که است نظری ریاضیات های شاخه از کسری حساب
اهمیت دارای معادلات این عددی جواب های آوردن دست به بنابراین یافت، را FPDEs تحلیلͬ جواب های راحتͬ به ͬ توان نم کلͬ
زیر بعدی دو FPDEs دستگاه حل برای ماتریسͬ روابط بر مبتنͬ فیبوناتچͬ هم مͺانͬ عددی روش معرفͬ به پردازد مͬ مقاله این }است.

cD
α
xu+ ux + f١(u, v) = g١(x, t)

cD
β
t v + vt + f٢(u, v) = g٢(x, t)

; (x, t) ∈ [٠, ١]× [٠, ١], ١ < α, β ≤ ٢. (١)

هستند. کپوتو مشتق های cD
β
t v و cD

α
xu آن در که ، u(٠, t) = u(x, ٠) = v(٠, t) = v(x, ٠) = ٠ اولیه شرایط با

(.[٢] منبع (مثلا ͬ رود م کار به دیفرانسیل معادلات انواع عددی حل برای ماتریسͬ، روابط بر مبتنͬ فیبوناتچͬ هم مͺانͬ روش

ماتریسͬ روابط بر مبتنͬ فیبوناتچͬ هم مͺانͬ روش .٢
ͬ بریم. م کار به را هم  مͺانͬ روش ماتریسͬ، معادلات به (١) دستگاه تبدیل برای اساسͬ ماتریسͬ روابط برخͬ ارائه از پس بخش، این در

ͬ دهیم م بسط زیر صورت به یافته برش فیبوناتچͬ سری حسب بر را معادله تقریبی جواب ابتدا منظور،  بدین

uN (x, t) =
N∑

m=١
N∑

n=١
amnFm(x)Fn(t), vN (x, t) =

N∑
m=١

N∑
n=١

bmnFm(x)Fn(t), (٢)

m,n = ١, . . . , N ازای به Fn و Fm و مجهول فیبوناتچͬ ضرایب ،m,n = ١, . . . , N ازای به bmn و amn آن در که
ͬ شوند م تعریف زیر صورت به که هستند فیبوناتچͬ چندجمله ای های

Fn(x) =

[
(n−١)

٢
]∑

j=٠

(
n− j − ١

j

)
xn−٢j−١, [(n− ٢/(١] =

{
n−٢

٢ , n زوج
n−١

٢ , n .فرد
. (FPDEs) کسری جزئͬ دیفرانسیل معادلات دستگاه فیبوناتچͬ، جمله ای های چند هم مͺانͬ، روش کلیدی: واژه های

.35R11, 65L60, 11B39 :[٢٠١٠] موضوعͬ طبقه بندی
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کسری جزئͬ دیفرانسیل معادلات دستگاه جواب تقریب

نوشت زیر ماتریسͬ شͺل به را (٢) تقریبی جواب ͬ توان م مجهول، فیبوناتچͬ ضرایب تعیین برای

u(x, t) = X(x)CT X̄(t)C̄TA, v(x, t) = X(x)CT X̄(t)C̄TB, (٣)

طوری که به B = [B١ B٢ · · ·BN ]T١×N٢ و A = [A١ A٢ · · ·AN ]T١×N٢ آن در که

Ai = [ai١ ai٢ · · · aiN ]T١×N , Bi = [bi١ bi٢ · · · biN ]T١×N , i = ١, ٢, . . . , N,

C̄T =


CT ٠ · · · ٠
٠ CT · · · ٠
... ... . . . ...
٠ · · · ٠ CT

 , X̄(t) =


X(t) ٠ · · · ٠

٠ X(t) · · · ٠
... ... . . . ...
٠ · · · ٠ X(t)

 , X(x) =
[١ x · · · xN−١] .

داریم C برای باشد، زوج N که صورتͬ در

C =



( ٠
٠

)
٠ ٠ ٠ · · · ٠

٠
( ١

٠

)
٠ ٠ · · · ٠( ١

١

)
٠

( ٢
٠

)
٠ · · · ٠

... ... ... ... ... ...(
(n− ٢) /٢
(n− ٢) /٢

)
٠

(
n/٢

(n− ۴)/٢

)
٠ · · · ٠

٠
(

n/٢
(n− ٢/(٢

)
٠

(
(n+ ٢) /٢
(n− ۴)/٢

)
· · ·

(
n− ١

٠

)



,

داریم باشد فرد N اگر و

C =



(
٠
٠

)
٠ ٠ ٠ · · · ٠

٠
(

١
٠

)
٠ ٠ · · · ٠(

١
١

)
٠

(
٢
٠

)
٠ · · · ٠

... ... ... ... ... ...
٠

(
(n− ١) /٢
(n− ٢/(٣

)
٠

(
(n+ ١) /٢
(n− ۵)/٢

)
· · · ٠(

(n− ١) /٢
(n− ٢/(١

)
٠

(
(n+ ١) /٢
(n− ٢/(٣

)
٠ · · ·

(
n− ١

٠

)



,
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بابلیان اس. مشهودی، ش.

مستقل متغیر هر برای را جزئͬ مشتقات ماتریسͬ شͺل ͬ توانیم م ما طرفͬ از .([٢] (منبع ͬ نامیم م ماتریسͬ روابط مشخصه ماتریس را C
کنیم تعریف زیر صورت به v(x, t) و u(x, t) توابع

ux(x, t) = X(x)DCT X̄(t)C̄TA, vx(x, t) = X(x)DCT X̄(t)C̄TB, (۴)

ut(x, t) = X(x)CT X̄(t)D̄C̄TA, vt(x, t) = X(x)CT X̄(t)D̄C̄TB, (۵)

آن در که

D̄ =


D ٠ · · · ٠
٠ D · · · ٠
... ... . . . ...
٠ ٠ · · · D

 , D =



٠ ١ ٠ · · · ٠
٠ ٠ ٢ · · · ٠
... ... ... . . . ...
٠ ٠ ٠ · · · N − ١
٠ ٠ ٠ · · · ٠


.

بنویسیم زیر شͺل به x متغیر به نسبت را u(x, t) تابع کسری مشتق یعنͬ ∂αu(x,t)
∂xα ͬ توانیم م نهایت ]در

∂αu(x, t)

∂xα

]
= M(x)CT X̄(t)C̄TA, (۶)

آن در که

M(x) =
∂αX(x)

∂xα
=
[

٠ Dαx Dαx٢ · · · DαxN−١
]

١×N
,

Dαxi =
Γ(i+ ١)

Γ(i+ ١ − α)
xi−α, i = ١, ..., N − ١.

بنویسیم زیر شͺل به را t متغیر به نسبت v(x, t) تابع کسری مشتق یعنͬ ∂βv(x,t)
∂tβ

ͬ توانیم م ]همچنین
∂βv(x, t)

∂tβ

]
= N(x)CT X̄(t)C̄TB, (٧)

آن در که
N(t) =

∂βX(x)

∂tβ
=
[

٠ Dβt Dβt٢ · · · DβtN−١
]

١×N

ͬ توانیم م ،(١) معادله در (٧) و (۶) ،(۵) ،(۴) روابط کارگیری به با .Dβti = Γ(i+١)
Γ(i+١−β) t

i−β, i = ١, ..., N − ١ طوری که به
باشیم داشته را زیر ماتریسͬ بسته شͺل

M(x)CT X̄(t)C̄TA+X(x)DCT X̄(t)C̄TA+ f١(F (x)F̄ (t)A,F (x)F̄ (t)B) = g١(x, t)

N(x)CT X̄(t)C̄TB +X(x)DCT X̄(t)C̄TB + f٢(F (x)F̄ (t)A,F (x)F̄ (t)B) = g٢(x, t) (٨)

است زیر شرح به (٣) رابطه از استفاده با (١) معادلات دستگاه اولیه شرایط ماتریسͬ شͺل .F̄ (t) = X̄(t)C̄T آن در که

u(x, ٠) = X(x)CTX(٠)CT
A = ٠, v(x, ٠) = X(x)CTX(٠)CT

B = ٠
u(٠, t) = X(٠)CTX(t)C

T
A = ٠, v(٠, t) = X(٠)CTX(t)C

T
B = ٠. (٩)
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کسری جزئͬ دیفرانسیل معادلات دستگاه جواب تقریب

داشت خواهیم را زیر ماتریسͬ معادلات دستگاه آن، در هم مͺانͬ نقاط جایͽذاری و (٨) ماتریسͬ معادلات مختصرنویسͬ }با
W١(xi, tj) [A] + f١(xi, tj) [A,B] = g١(xi, tj)
W٢(xi, tj) [B] + f٢(xi, tj) [A,B] = g٢(xi, tj)

, i = ١, ٢, ..., N, j = ١, ٢, ..., N,

xi =
l

N − ١(i− ١), i = ١, ٢, ..., N,

tj =
τ

N − ١(j − ١), j = ١, ٢, ..., N,

اولیه شرایط لحاظ با که ͬ آید م دست به W [A,B] = G اساسͬ ماتریسͬ معادله بنابراین است. ماتریسͬ معادلات دستگاه ͷی که
جواب نهایت در و شده تعیین [A,B] = W−١G صورت به فیبوناتچͬ مجهول ضرایب حاصل، دستگاه حل و (٩) رابطه همͽن

است. شده پرهیز آن تکرار از ایجاز، برای که است [٣ ،٢] منابع مشابه همͽرایی، و خطا تحلیل ͬ آید. م دست به (٣) رابطه از تقریبی

عددی نتایج .٣
. ([٣] (منبع بͽیرید نظر در را زیر کسری دیفرانسیل معادلات دستگاه فیبوناتچͬ، هم مͺانͬ روش برای مثال ͷی عنوان }به

Dα
xu(x, t) + ux + ٢v − u = ٨x ٣

٢ sinh(t)/
√
π + ٣x٢ sinh(t) + ٢t٣ sinh(x)− x٣ sinh(t)

Dβ
t v(x, t) + vt + ٢u+ v = ٨x ٣

٢ sinh(x)/
√
π + ٣t٢ sinh(x) + ٢x٣ sinh(t) + t٣ sinh(x)

, (١٠)

با است برابر α = β =
٣
٢ ازای به دستگاه این دقیق جواب u(٠, t) = u(x, ٠) = v(٠, t) = v(x, ٠) = ٠ اولیه شرایط با

n = m = ازای به (١٠) معادلات دستگاه حل برای پیشنهادی روش دقیق خطای .u(x, t) = x٣ sinh(t), v(x, t) = t٣ sinh(x)
برای روش خطای دهنده نشان Erroru جدول، این در است. شده آورده ١ جدول در t = ٠/٣, ٠/۶, ٠/٩ در n = m = ٨ و ۵
است. برخوردار خوبی دقت از روش ͬ دهند م نشان نتایج است. v(x, t) تابع برای روش خطای دهنده نشان Errorv و u(x, t) تابع

t x Erroru Errorv

m = n = ۵ m = n = ٨ m = n = ۵ m = n = ٨
٠٫٣ ٠٫٢ ٧٫٠۵ × ٨−١٠ ٣٫۶۶ × ١٣−١٠ ٣٫٣٠ × ٧−١٠ ٧٫٣١ × ١٢−١٠

٠٫۵ ١٫١٠ × ١٠−۶ ۵٫٨۵ × ١٢−١٠ ٩٫٩٢ × ١−١٠۶ ٢٫۶٠ × ١٢−١٠

٠٫٨ ۴٫۵١ × ١٠−۶ ٢٫۴٠ × ١١−١٠ ٣٫۴۵ × ٧−١٠ ٨٫۴۴ × ١٢−١٠

٠٫۶ ٠٫٢ ٩٫۶١ × ٨−١٠ ۵٫٢٣ × ١٣−١٠ ٢٫۶۴ × ١٠−۶ ۵٫٨۵ × ١١−١٠

٠٫۵ ١٫۵٠ × ١٠−۶ ٨٫٢۴ × ١٢−١٠ ٨٫۶٠ × ١−١٠۶ ٢٫٠٩ × ١١−١٠

٠٫٨ ۶٫١۵ × ١٠−۶ ٣٫٣٧ × ١١−١٠ ٢٫٧۶ × ١٠−۶ ۶٫٧۶ × ١١−١٠

٠٫٩ ٠٫٢ ٢٫٧۵ × ٧−١٠ ۵٫٨٨ × ١٢−١٠ ٨٫٩١ × ١٠−۶ ١٫٩٧ × ١٠−١٠

٠٫۵ ۴٫٢٩ × ١٠−۶ ٩٫١٩ × ١١−١٠ ٨٫٣٢ × ١−١٠۶ ٧٫٠۶ × ١١−١٠

٠٫٨ ١٫٧۶ × ١٠−۵ ٣٫٧۶ × ١٠−١٠ ٩٫٣٣ × ١٠−۶ ٢٫٢٨ × ١٠−١٠

نظر. مورد پارامترهای ازای به (١٠) کسری دیفرانسیل معادلات دستگاه برای پیشنهادی روش دقیق خطای .١ جدول

نتیجه گیری .۴
بالا دقت با عددی جواب های آوردن دست به برای فیبوناتچͬ جمله ای چند روش اساس بر دقیق و کارآمد عددی روش ͷی مقاله این در
،MATLAB نرم افزار ͷکم به سپس و شد مطرح مثال ͷی روش کارائͬ بررسͬ برای شد. پیشنهاد FPDEs بعدی دو دستگاه های برای
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

از آمده پدید تغییراتͬ نامساوی های حل در بازگشتͬ هسته های بر مبتنͬ روش ͷی
آمریͺایی معامله اختیارهای

عباسͬ ناصر  مجتبی   مرادی پور،

ͬ پردازیم. م آن عددی حل به و نوشته تغییراتͬ نامساوی ͷی صورت به را آمریͺایی معامله اختیار قیمت گذاری مساله مقاله در این  چͺیده.
یابیم، مͬ دست مͺان بعد در تغییراتͬ نامساوی های از دنباله ای به و سازیکرده گسسته زمان بعد در را نظر مورد تغییراتͬ ابتدا نامساوی
هسته های از استفاده ͬ بریم. م کار به هم مͺانͬ روش همراه به را بازگشتͬ هسته های مͺان، بعد در تغییراتͬ نامساوی های حل برای سپس
بندی شبͺه  از مستقل شده رفته کار به روش ͬ شود. م برقرار خودکار طور به مساله مرزی شرایط که است مهم مزیت این دارای بازگشتͬ
قابل همچنین و دارد تغییراتͬ نامساوی های حل در بالایی کارایی روش این ͬ شود. م دقیقͬ نتایج تولید به منجر و بوده هم مͺانͬ نقاط

بود. خواهد بالاتر ابعاد با با مسایل به تعمیم

پیش گفتار .١

تغییراتͬ نامساوی صورت به که است آزاد مرزی شرایط با جزیی دیفرانسیل معادله ͷی آمریͺایی معامله اختیار قرارداد ارزش یافتن مساله
ͬ شود. م فرمول بندی نیز زیر

ut − uxx ≥ ٠, −∞ < x <∞, ٠ ≤ t ≤ tmax,

u ≥ g,

(ut − uxx)(u− g) = ٠,
u(x, ٠) = g(x, ٠),
limx→±∞ u(x, t) = g(x, t),

(١)

آن در که
g(x, t) = e

t
۴ (q+١)٢

max{e
x
٢ (q−١) − e

x
٢ (q+١), ٠}

جامع شرح یافتن برای همچنین ببینید. [۶] و [۴] ، [٣] در را دقیق  تر جزییات است. ثابت عددی q پارامتر و مساله اولیه شرط بیان گر
پایه ای توابع اساس بر روش ͷی [۴] در و طیفͬ عناصر روش [٣] در ͬ دهیم. م ارجاع [٢] به را خواننده تغییراتͬ نامساوی های کامل و
حل برای [۵] توسط شده معرفͬ بازگشتͬ هسته های بر مبتنͬ مͺانͬ هم روش از مقاله این در شده اند. رفته کار (١) به حل برای شعاعͬ

ͬ گیریم. م بهره (١) مساله

. تغییراتͬ. نامساوی های مرز‐آزاد، معادلات بازگشتͬ، هسته های کلیدی: واژه های
.65M70, 58E35, 45H05 :[٢٠١٠] موضوعͬ طبقه بندی
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تغییراتͬ نامساوی های حل در بازگشتͬ هسته های از استفاده

بازگشتͬ هسته های از استفاده با تغییراتͬ نامساوی حل و سازی گسسته .٢
ͬ کنیم م گسسته سازی زمان بعد در زیر صورت به را (١) مساله اویلر پیشرو متناهͬ تفاضل روش از استفاده با ابتدا

ut(x, tn) =
u(x, tn)− u(x, tn−١)

δ
, (٢)

تغییراتͬ نامساوی های از زیر دنباله به (١) معادله در (٢) جایͽذاری و un = u(x, tn) نمادگذاری با است. زمانͬ گام طول δ آن در که
ͬ کنیم: م پیدا دست مͺان بعد در

un − δun′′ − un−١ ≥ ٠,
un ≥ gn,

(un − δun′′ − un−١)(un − gn) = ٠,
u٠ = g(x, ٠),
limx→±∞ un = g(x, tn).

(٣)

به دومرز هر در (١) اصلͬ مساله همانند و شده اند تعریف (−∞,+∞) نامتناهͬ بازه بر ͬͽهم (٣) در موجود تغییراتͬ نامساوی های
ͬ کنند. م میل صفر

کنیم فرض ͬ کنیم. م جایͽزین [a, b] بازه چون متناهͬ دامنه ͷی با را آن و زده برش را (٣) نیم گسسته مساله نامتناهͬ دامنه حال
مرزی شرایط که معین مثبت هسته ͷی ساختن برای باشد. [a, b] بازه در دلخواه نقاط از شبͺه ای a < x١ < x٢ < . . . < xm < b

ͬ کنیم م تعریف ͬ کنیم. م عمل زیر صورت به کند برآورده را صفر
K١(x, y) = K(x, y)− K(x,a)K(y,a)

K(a,a) ,

K٢(x, y) = K١(x, y)− K١(x,b)K١(y,b)
K١(b,b) .

(۴)

،Gaussian(GA) ،Inverse Quadratic(IQ) ،Multiquadric(MQ) هسته های از کدام هر ͬ تواند م K(x, y) آن در که
مهم خاصیت این با معین مثبت هسته ͷی K٢(x, y) تابع باشد. Thin Plate Splines و Inverse Multiquadric(IMQ)
معادلات حل برای هم مͺانͬ روش همراه به هسته  ها این [١] در ͬ کنند. م برآورده خودکار صورت به را همͽن مرزی شرایط که است

ͬ کنیم م تعریف زیر صورت به را هم مͺانͬ روش پایه ای توابع حال شده اند. برده کار به تاخیری دیفرانسیل
ψj(x) = K٢(x, xj), j = ١, ٢, . . . ,m.

از زیر خطͬ ترکیب صورت به را (٣) نیم گسسته معادله جواب ͬ باشند. م صفر برابر x = b و x = a مرزی نقاط در توابع این ͬͽهم
ͬ نویسیم: م پایه ای توابع

un(x) ≃ ũn(x) =

m∑
j=١

ũn(xj)ϕj(x) (۵)

صورت: به خطͬ مͺمل مسائل از دستگاه ͷی به هم مͺانͬ نقاط در آن مقداردهͬ و  (٣) نیم  گسسته معادله در (۵) جایͽذاری با
un − gn ≥ ٠,
Mun −Bun−١ ≥ ٠,
(un − gn)⊤

(
Mun −Bun−١) = ٠.

که طوری به را un ∈ Rm بیابید (۶)

تصویر متوالͬ تخفیف فوق روش از استفاده با است شده داده شرح [٣] در که همان طور را (۶) خطͬ مͺمل مسائل ͬ کنیم. م پیدا دست
آيد. دست به زمانͬ سطر هر در تغییراتͬ نامساوی های جواب تا ͬ کنیم م حل (Projeted Successive Over Relaxation) شده

ͬ کند. م تولید دقیقͬ نتایج و بوده کارا بسیار شده ارائه روش ͬ دهد م نشان عملͬ محاسبات
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عباسͬ ن.  پور، مرادی م.

عددی نتایج .٣
و K = ١٠ اعمال قیمت ،σ = ٫٢۵ تغییرپذیری ،r = ٫٠۵ بهره نرخ با آمریͺایی معامله اختیار ͷی قیمت یافتن مساله بخش این در

ͬ باشند: م زیر صورت به (١) معادله در tmax و q پارامترهای ͬ دهیم. م قرار بررسͬ مورد را T = ٫۵ انقضای زمان

q =
٢r
σ٢ = ١٫۶, tmax =

σ٢
٢ T = ٠٫٠١۵۶٢.

با را نیم گسسته مساله نامتناهͬ دامنه سپس ͬ کنیم. م گسسته سازی هم فاصله نقطه n = ١٠٠ توسط [٠, tmax] زمانͬ بازه در را مساله
توابع از ͬ گیریم. م نظر در بازه این در را فاصله هم هم مͺانͬ نقطه m = ۵٠ تعداد جایͽزینکرده، [a, b] = [−٢, ٢] محاسباتͬ دامنه
در هم مͺانͬ روش اعمال با ͬ کنیم. م تعریف (۴) طبق را متناظر بازگشتͬ هسته  کرده، استفاده Multiquadric(MQ) شعاعͬ پایه ای
مͺمل مسائل ͬ شود. م حاصل (۶) فرم به خطͬ مͺمل مسائل از دنباله ͷی و شده گسسته سازی کامل صورت به مساله شده، ذکر نقاط
جدول در ͬ آوریم. م دست به زمانͬ سطر هر در را جواب و حلکرده PSOR روش از استفاده با زمانͬ سطر هر برای را آمده پدید خطͬ
[۴] توسط شده ارائه هم مͺانͬ روش از آمده  دست به جواب های با را را مقاله این در شده ارائه روش توسط آمده دست به جواب های ١

آمده اند. دست به نقطه ١٠٠٠٠ تعداد با و دوجمله ای روش توسط ١ جدول در شده ارائه دقیق جواب های مقایسهکرده ایم.
نشان آمده دست به نتایج است. شده استفاده هم مͺانͬ نقطه m = ١٢٠ همراه به زمانͬ مرحله n = ١٠٠ تعداد از [۴] مرجع در

ͬ شود. م بهتر دقت با جواب های تولید به منجر کمتر، پیچیدگͬ مرتبه وجود با شده ارائه روش ͬ دهند م
١٣ ١٢ ١١ ١٠ ٩ ٨ ٧ پایه دارایی نقدی قیمت

٠٫٠۴۴۵ ٠٫١١۶٣ ٠٫٢٧٨۵ ٠٫۶٠٢١ ١٫١۶۴٣ ٢٫٠٠١٨ ٣٫٠٠٠٢ بازگشتͬ هسته های روش از آمده دست به جواب 
٠٫٠۴۴٩ ٠٫١١۶٩ ٠٫٢٧٩١ ٠٫۶٠٢٧ ١٫١۶۴٩ ٢٫٠٠٢٢ ٣٫٠٠٠٧ [۴] مرجع توسط شده ارائه جواب های
٠٫٠۴۴٣ ٠٫١١۵٩ ٠٫٢٧٨١ ٠٫۶٠٢١ ١٫١۶۴١ ٢٫٠٠١۴ ٣ دقیق جواب

در (١) مساله برای جواب ها .[۴] مرجع در شده ارائه روش با بازگشتͬ هسته های روش از آمده دست به جواب های مقایسه :١ جدول
آمده اند. دست به پایه دارایی نقدی قیمت مختلف مقادیر ازای به و t = tmax زمان
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

مشتق با تأخیری دیفرانسیل معادلات برای نوین یافته انتقال ژاکوبی عملͽر ماتریس روش
کسری مرتبه از

شیوانیان الیاس لو، خدابنده حمیدرضا

ͷتکنی ͷی کار، این در ͬ دهد. م قرار بررسͬ مورد را متغیر مرتبه از کسری مشتقات با تأخیری دیفرانسیل معادلات پژوهش، این چͺیده.
متغیر مرتبه از کسری مشتقات با عبارتͬ چند تأخیری دیفرانسیل معادلات دسته ͷی حل برای نوین یافته انتقال ژاکوبی عملͽر ماتریس
پیشنهادی ͷتکنی ͬ نماییم. م حل عددی روش به را دستگاه آن جبری، معادلات دستگاه ͷی به اصلͬ مساله کاهش با که ͬ شود م معرفͬ
الͽوی دقت عمومیت، اثربخشͬ، دادن نشان برای را جامعͬ عددی آزمایشات و داده توسعه الذکر، فوق مساله برای آمیز موفقیت بطور را
روش ،(NSJOM) کسری آدامز روش قبیل از دیͽر موجود روش های با را حاضر ͷتکنی ارائهکرده ایم. روش، این انعطاف و پیشنهادی
مقایسهکرده (L١ − PCM) L١ اصلاحͽر پیشͽو وروش آدامز‐بشفورث‐مولتون الͽوریتم ،(NPCM)جدید پیشͽو‐اصلاحͽر
ساخته ایم. نمایان را روش این کارآمدی و اثربخشͬ دقیق، جواب با جاری روش مقایسه همچنین ها، روش این عددی نتایج مقایسه از و
نظر در عددی الͽوهای از بسیاری از تعمیمͬ ͷی عنوان به ͬ تواند م ͷتکنی این و بوده آسان بسیار مذکور روش سازی پیاده که داریم توجه

شود. گرفته

پیش گفتار .١
در ͬ شود. م محسوب اخیر دهه سه در تحقیق برای سریع رشد دارای و فعال موضوع ͷی کسری حسابان کاربردهای و تحلیل تجزیه،
تجربی های داده ،ͷترمودینامی در منظم تغییرات ،ͷفیزی مانند علمͬ مختلف های رشته در آن گسترده کاربردهای دلیل به حاضر حال

.[٧ ،۶] است شده تبدیل مهمͬ ابزار به غیره و
ͬ شود م زیستͬ مهندسͬ زمینه در مخصوصا جدیدی های دیدگاه ایجاد باعث کسری مرتبه دیفرانسیل معادلات در تأخیر گنجاندن
در .[٨ ،١] ͬ یابد م بهبود کسری مشتقات توسط ، ͬ دهد م رخ ͬͺبیولوژی بافت های در که پویایی هایی درک زیستͬ، مهندسͬ در زیرا
حسب بر معینͬ زمان در مجهول تابع مشتق آن در که هستند دیفرانسیل معادله نوعͬ ،(DDEs) تأخیری دیفرانسیل معادلات ریاضیات،

ͬ شود. م داده قبلͬ های زمان در تابع مقادیر
روی خنثͬ معادلات مورد در (و جواب به زمان هر در مشتق که نظر این از آن معمولͬ نوع با کسری تأخیری دیفرانسیل معادلات
دیفرانسیل معادلات شͺل به توان مͬ را طبیعͬ دنیای در رویدادها از بسیاری است. متفاوت دارد، بستگͬ قبلͬ های زمان در مشتق)
رشته در زیادی کاربردهای مختلف، مسائل سازی مدل با کسری مرتبه با دیفرانسیل معادلات کرد. سازی مدل کسری مرتبه از تأخیری
و مارگادو١ همچون محققانͬ اخیر، سال های در دارد. ... و کنترل شناسͬ، زیست ،ͷترودینامیͺال اقتصاد، مانند علوم مختلف های

عملͽر. ماتریس ͷتکنی ژاکوبی، چندجمله ا ی های متغیر، مرتبه از کسری مشتقات با تأخیری دیفرانسیل معادلات کلیدی: واژه های
.13D45, 39B42 مورد) ٣ تا ١) :[٢٠١٠] موضوعͬ طبقه بندی

1Margado
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نوین یافته انتقال ژاکوبی عملͽر ماتریس روش

با تأخیری دیفرانسیل معادلات با رابطه در متعددی …تحقیقات و همͺاران و لو۵ خدابنده ، دهقان۴ و زاده٣ عباس دفتردار‐گجج٢ͬ،
از این، بر علاوه نمایید. مراجعه [١٠،٩،٧،۴،١] منابع به ͬ توانند م علاقمندان بیشتر، جزئیات برای که رسانیده اند انجام به کسری مشتق
ͬ شود. م استفاده کسری مرتبه دیفرانسیل معادلات حل برای دارد، بستگͬ متعامد چندجمله ای از مجموعه ای به اساساً که طیفͬ روش های

اند: شده داده نشان زیر صورت به که است ͷکلاسی ژاکوبی های ای جمله چند آنها ترین معروف از ͬͺی

P (α,β)
n (x) (n ≥ ٠, α > −١, β > −١).

آوردن بدست مزیت های زیرا قرارگرفته اند، استفاده مورد عملͬ کاربردهای و ریاضͬ تحلیل های در گسترده به طور جمله ای ها چند این
شاخص های با ژاکوبی چندجمله ای طریق از ͷسیستماتی مطالعه ͷی انجام بنابراین، دارند. را α و β پارامترهای در عددی جواب های

.[٣] ͬ شود م نظرگرفته در t ∈ [٠, I] زمانͬ بازه بودن بدیع و اهداف از ͬͺی وضوح به امر این و بود خواهد مفید α و β کلͬ
یافته انتقال ژاکوبی عملͽر ماتریس ͷی ما واقع، در است. جواب پایه در متعامد های ای چندجمله تعمیم پژوهش، این هدف اکنون
زیر بصورت آن مساله که ͬ آوریم م بدست متغیر مرتبه از کسری مشتقات با عبارتͬ چند تأخیری دیفرانسیل معادلات حل برای را نوین

است:
n∑

j=١
αjD

ηj(t)w(t) + αn+١w(t− τ) = F (t, w(t), Dη١(t)w(t), ..., Dηn(t)w(t), w(t− τ )), ٠ ≤ t ≤ T, (١)

w(t) = g(t), t ∈ [−τ, ٠], w(٠) = w٠,

با متغیر کسری مشتق Dηj(t)w(t), (j = ١, ٢, ..., n) ازای به و αj ∈ R(j = ١, ٢, ..., n + ١), αn+١ ̸= ٠ و ٠ < T که
ͬ باشند. م کاپوتو تعریف

مقدمات و مبانͬ و NSJOM روش کلͬ ساختار .٢
مهم های ویژگͬ از برخͬ سپس کنیم. مͬ بررسͬ را کسری حسابان نظریه مهم و اساسͬ های ویژگͬ از برخͬ بخش، این قسمت اولین در

ͬ نماییم. م یادآوری کند، مͬ ͷکم پیشنهادی ͷتکنی توسعه در ما به که را ژاکوبی های ای جمله چند
:[۴] ͬ باشد م زیر بصورت w(t) ∈ Cm[٠, T ] برای η(t)متغیر مرتبه از کاپوتو کسری مشتق .١ تعریف

Dη(t)w(t) =
١

Γ(١ − η(t))

∫ t

٠+
w′(τ)

(t− τ)η(t)
dτ +

w(٠+)− w(٠−)
Γ(١ − η(t))

t−η(t). (٢)
داشت: خواهیم ،٠ < η(t) < ١ برای و اولیه زمان در

Dη(t)w(t) =
١

Γ(١ − η(t))

∫ t

٠+
w′(τ)

(t− τ)η(t)
dτ. (٣)

داشت: خواهیم ،(٢) معادله طبق
Dη(t)C = ٠. (۴)

داریم: دیͽر طرف از ͬ باشد. م ثابت عددی C که

Dη(t)tk =


٠, for k = ٠,

Γ(k + ١)
Γ(k + ١ − η(t))

tk−η(t) for k = ١, ٢, . . . . (۵)

2Daftardar-Gejji
3Abbaszadeh
4Dehghan
5Khodabandehlo
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شیوانیان ا. لو، خدابنده ح.ر.

:[٣] ͬ باشد م زیر تحلیلͬ فرم دارای [٠, T ] بازه در یافته انتقال ژاکوبی ایهای چندجمله از مرتبه i‐مین ،P (α,β)
T,i (t) .٢ تعریف

P
(α,β)
T,i (t) =

i∑
k=٠

(−١)i−k Γ(α+ i+ ١)Γ(α+ β + k + i+ ١)
Γ(α+ β + i+ ١)Γ(α+ ١ + k)Γ(k + ١)Γ(i− k + ١)T k

tk, (۶)

=
i∑

k=٠

Γ(β + i+ ١)Γ(α+ β + k + i+ ١)
Γ(α+ β + i+ ١)Γ(β + ١ + k)Γ(k + ١)Γ(i− k + ١)T k

(T − t)k. (٧)

یافته انتقال ژاکوبی جمله ایهای چند بوسیله تابع تقریب .٢. ١
بسط زیر عبارت شͺل به ͬ تواند م پس باشد، مربع۶ͬ پذیر انتگرال ،[٠, T ] در ω(α,β)

T (t) وزن تابع ملاحظه با w(t) تابع که کنیم فرض
:[۵ ،٣] کند پیدا

w(t) =

∞∑
i=٠

aiP
(α,β)
T,i (t), ai =

١
h
(α,β)
T,j

∫ T

٠
ω
(α,β)
T P

(α,β)
T,i (t)w(t)dt, i = ٠, ١, . . . . (٨)

بزنیم: تخمین ،(٨) معادله در سری جمله (N + ١) نظرگرفتن در با را تقریبی جواب ͬ توانیم م ما بنابراین،

w(t) ≃ wN (t) =

N∑
i=٠

aiP
(α,β)
T,i (t) = ATΦT,N (t), (٩)

که است شده فرض اینجا در .ΦT,N (t) = [P
(α,β)
T,٠ (t), P

(α,β)
T,١ (t), . . . , P

(α,β)
T,N (t)]T و A = [a٠, a١, . . . , aN ]T که

B(α,β) که ͬ شود م ارائه ΦT,N (t) = B(α,β)S(t) بصورت ΦT,N (t) بردار ،(٩) معادله با .S(t) = [١, t, t٢, t٣, . . . , tN ]T

داریم: و ͬ باشد م (N + ١)× (N + ١) مرتبه از مربعͬ ماتریس ͷی

bi+١,j+١ =


(−١)i−j (α+ i)!(α+ β + j + i)!

(α+ β + i)!(α+ j)!(j!)(i− j)! T j
, i ≥ j,

٠ , otherwise.

(١٠)

داریم: ازاینرو .٠ ≤ i, j ≤ N برای

S(t) = B−١
(α,β) ΦT,N (t). (١١)

(SJOM) یافته انتقال ژاکوبی عملͽر ماتریس .٣
به را مساله بنابراین، کنیم. مͬ بررسͬ (١) معادله عددی حل از پشتیبانͬ برای را کسری متغیر مرتبه (SJOM) ما قسمت، این در
(i = Dηi(t)ΦT,N (t), ابتدا، در کنیم. مͬ تبدیل شوند مͬ حل کالوکیشن٧ نقاط در عددی صورت به که معادلاتͬ از جبری سیستم

پس: ،ΦT,N (t) = B(α,β)S(t) که داریم بخاطر شود: نتیجه زیر بصورت ͬ تواند م ١, ٢, . . . , n)

Dηi(t)ΦT,N (t) = Dηi(t)(B(α,β)S(t)) = B(α,β)D
ηi(t)[١, t, . . . , tN ]T , i = ١, ٢, . . . , n. (١٢)

6Square integrable
7Collocation points
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نوین یافته انتقال ژاکوبی عملͽر ماتریس روش

داریم: (١٢) و (۵) معادلات ترکیب با که
Dηi(t)ΦT,N (t) = B(α,β)D

ηi(t)(S(t))

= B(α,β)[٠, Γ(٢)t
(١−ηi(t))

Γ(٢ − ηi(t))
, . . . ,

Γ(N + ١)t(N−ηi(t))

Γ(N + ١ − ηi(t))
]T

= B(α,β)



٠ ٠ ٠ · · · ٠
٠ Γ(٢)t−ηi(t)

Γ(٢ − ηi(t))
٠ · · · ٠

٠ ٠ Γ(٣)t−ηi(t)

Γ(٣ − ηi(t))
· · · ٠

... ... ... ... ...
٠ ٠ ٠ · · · Γ(N)t−ηi(t)

Γ(N + ١ − ηi(t))





١
t

t٢
...
tN


= B(α,β)Qi(t)S(t), i = ١, ٢, . . . , n.

(١٣)

داشت: خواهیم (١١) معادله از استفاده با
Dηi(t)ΦT,N (t) = B(α,β)Qi(t)B

−١
(α,β)ΦT,N (t), i = ١, ٢, . . . , n.

کسری مشتق ͬ توانیم م اکنون بود. خواهد B(α,β)Qi(t)B
−١
(α,β) ،مساوی Dηi(t)ΦT,N (t) , (i = ١, ٢, . . . , n.) عملͽر ماتریس

های ریشه که tj (j = ٠, ١, ٢, . . . ,m) از ما سرانجام بزنیم. تخمین آید، مͬ دست به (٩) معادله در که را تقریبی تابع متغیر مرتبه
قابل شده شناخته عددی روش های با که ͬ گردد م تبدیل زیر جبری دستگاه به (١) معادله ازاینرو کنیم. مͬ استفاده باشد مͬ P (α,β)

T,m+١(t)
ͬ شود. م حاصل (٩) معادله در شده ارائه عددی جواب دیͽر عبارت به معینگردد، A مجهول بردار تا است حل

n∑
i=١

αi(A
TB(α,β)Qi(tj)B

−١
(α,β)ΦT,N (tj)) + αn+١ATΦT,N (tj − τ) =

F (tj , A
TΦT,N (tj), (A

TB(α,β)Q١(tj)B−١
(α,β)ΦT,N (tj)), (A

TB(α,β)Q٢(tj)B−١
(α,β)ΦT,N (tj)), ...,

(ATB(α,β)Qn(tj)B
−١
(α,β)ΦT,N (tj)), A

TΦT,N (tj − τ)) , j = ٠, ١, ٢, . . . ,m. (١۴)

پژوهش دست آورد های .۴
آورده پیشنهادی ͷتکنی اعتبار و عمومیت کاربرد، کارایی، دقت، دادن نشان برای عددی مثال ͷی قبلͬ، بحث اساس بر بخش، این در
را آن ما شده، ارائه الͽوی آزمایش منظور به است. شده محاسبه Mathematica١٠ افزار نرم توسط حاضر روش نتایج است. شده
مقایسه مثال حل برای نیاز مورد CPU زمان مقدار و | wexact(t) − wn(t) مطلق| خطاهای نظر از شده شناخته های روش سایر با
روش های به نسبت بهتری تطابق جدید ͷتکنی این که ͬ دهد م نشان مثال، دقیق جواب با ͷتکنی این از به دست آمده نتایج مقایسه کرده ایم.

باشد. اعتمادتر قابل و تر کاربردی روش این تا شود مͬ باعث ͷتکنی این آسان اجرای و ثبات پایداری، دارد. دیͽر
بͽیرید: نظر در را ٠ < η ≤ ١ , τ > برای٠ کسری تأخیری دیفرانسیل معادله .١ مثال

Dηw(t) =
٢w(t)١−η٢
Γ(٣ − η)

+ w(t− τ) − w(t) + ٢τ√w(t)− τ٢,

w(t) = ٠, t ≤ ٠.
(١۵)
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شیوانیان ا. لو، خدابنده ح.ر.

مثال.١. برای T = ٢ و α = ٠, β = ٠ با [٢ ،١] در موجود روش های با حاضر روش مطلق خطای مقایسه :١ جدول
N = [٢]،٢٠٠٠ روش N = ٢٠٠٠، [١] روش N = ٧ حاضر، روش N = حاضر،٢ روش t ∈ [٠, T ]

٧٫٨١۵۵٠ × ٢−١٠ ٧٫٨١١٩٧ × ٢−١٠ ۴٫٢٣٢٧٢ × ١−١٠۶ ۵٫١٩۵٢۵ × ٧−١٠ ٠٫٢
١٫٢٩٩٧٨ × ١−١٠ ١٫٢٩٩٢٨ × ١−١٠ ١٫٣٨٧٧٨ × ١٧−١٠ ١٫٠٠٢١١ × ١٠−۶ ٠٫۴
١٫٩٠٧۶٠ × ١−١٠ ١٫٩٠۶٨٧ × ١−١٠ ١٫۶۶۵٣٣ × ١−١٠۶ ١٫۴۴٧٧٧ × ١٠−۶ ٠٫۶
٢٫۴٨۶٩۴ × ١−١٠ ٢٫۴٨۶٠١ × ١−١٠ ٠ ١٫٨۵۶۴٩ × ١٠−۶ ٠٫٨
٣٫٠٧٧۶٣ × ١−١٠ ٣٫٠٧۶۴٩ × ١−١٠ ٠ ٢٫٢٢٨٢٧ × ١٠−۶ ١٫٠
٣٫۶۶۵۶٣ × ١−١٠ ٣٫۶۶۴٢٧ × ١−١٠ ٠ ٢٫۵۶٣١٢ × ١٠−۶ ١٫٢
۴٫٢۵۴٧٩ × ١−١٠ ۴٫٢۵٣٢٢ × ١−١٠ ٠ ٢٫٨۶١٠۴ × ١٠−۶ ١٫۴
۴٫٨۴٣٨٧ × ١−١٠ ۴٫٨۴٢٠٨ × ١−١٠ ٠ ٣٫١٢٢٠٢ × ١٠−۶ ١٫۶
۵٫۴٣٣١٢ × ١−١٠ ۵٫۴٣١١٠ × ١−١٠ ٠ ٣٫٣۴۶٠٧ × ١٠−۶ ١٫٨
۶٫٠٢٢۴٣ × ١−١٠ ۶٫٠٢٠١٩ × ١−١٠ ٠ ٣٫۵٣٣١٨ × ١٠−۶ ٢٫٠

٢١۵٫٠٣١٢۵٠ s ١٠۴٫٣۴٣٧۵٠ s ٠٫۶٣٩۶٠ s ٠٫٠١۵۶٠ s time CPU

باشد. مͬ ٠ ≤ t ≤ T , T = ٢, τ = ٠٫٣ , η = ٠٫۶ و w(t) = tبرابر٢ دقیق جواب که داریم توجه
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گیلان دانشͽاه ،١۴٠١ اردیبهشت ١٩– ٢١
آن کاربردهای و عددی آنالیز سمینار نهمین

آمیز) فاجعه وقایع قرضه اوراق شبیه سازی و بندی (مدل مالͬ بازار های در نو ظهور ابزار های

میر فرزانه حیدری، ساغر

نتیجه در و فاجعه آمیز وقایع افزایش گذشته دهه چند در ͬ پردازیم. م آمیز فاجعه وقایع قرضه اوراق مطالعه به مقاله این در چͺیده.
برای ظرفیت ها و منابع کمبود و سو ͷی از بیمه ای موسسات و شرکت ها برای وقایع این بیمه ای تعهد ات از ناشͬ ͷریس پوشش مشͺلات
ابزارهای و سرمایه بازار های در موجود پتانسیل  ها ی و ظرفیت ها از بهره مندی زمینه دیͽر، سوی از وقایع این از ناشͬ خسارت های جبران
تامین جهت در که هستند مالͬ بازار های در نو ظهور ابزارهای از ͬͺی فاجعه آمیز وقایع قرضه اوراق راستا این در است. نموده فراهم را مالͬ
سرمایه بازار حوزه دو هر در بیمه ای قرضه اوراق این وجود اهمیت به توجه با ͬ گیرند. م قرار استفاده مورد ͷریس مدیریت و مالͬ منابع
اوراق قیمت گذاری و مدل سازی به پژوهش این در ͬ شود. م احساس پیش از بیش ابزارها این منصفانه قیمت گذاری لزوم بیمه، صنعت و
سادگͬ دلیل به نرخ بهره ͷدینامی برای هو‐لͬ) ) توسعه یافته مرتون تصادفͬ مدل از منظور این برای ͬ پردازیم. م فاجعه آمیز وقایع قرضه
شبیه سازی ͷکم به را اوراق این منصفانه قیمت مختلف، بازپرداخت توابع برای سپس و کرده استفاده تک عاملͬ مدل های در مدل این

ͬ آوریم. م بدست مونت کارلو

پیش گفتار .١
مالͬ و جانͬ زیان ها ی و خسارات افزایش آن دنبال به و زلزله و طوفان سیل، مانند طبیعͬ بلا یای و فاجعه آمیز وقایع رشد به رو وقوع
رویداد ͷی است. خیز حادثه جغرافیایی موقعیت با کشورها خصوص به کشور ها و جوامع در اخیر مشͺلات از ͬͺی حوادث این از ناشͬ
از ناشͬ ͷریس پوشش و خسارت جبران بنابراین باشد. داشته همراه به خسارت دلار میلیارد صدها از بیش ͬ تواند م طبیعͬ فاجعه آمیز
بلایای از ناشͬ خسارات افزایش دیͽر، جنبه از است. خیز حادثه کشور های در بیمه شرکت های توجه مورد موضوعات از ͬͺی وقایع این
تمایل عدم و بی میلͬ باعث دیͽر، طرف از وارده خسارات جبران برای بیمه ای شرکت  های ظرفیت های کمبود و طرف ͷی از طبیعͬ
است واقعیت این از حاکͬ سرمایه گذاری و مالͬ بازار های در ͬ ها بررس و مطالعات است. شده حوزه این در فعالیت ادامه برای بیمه گران
قابل سرمایه بازار در مالͬ ظرفیت از حجم این که باشد دلار میلیارد ده ها تا است ممͺن جهانͬ مالͬ بازارهای روزانه معاملات حجم که
ایده بار اولین نمود. استفاده جامعه در بزرگ ریسͷ های پوشش جهت در مالͬ بازارهای ظرفیت از ͬ توان م اوصاف این با است. توجه
در اتکا یی بیمه های و بیمه شرکت  های ظرفیت افزایش نتیجه در و مالͬ منابع تامین جهت در سرمایه بازار به بیمه ای ریسͷ  های انتقال
شد. بیمه ای بهادار اوراق عنوان با مالͬ بازارهای در و بیمه صنعت در نوینͬ ابزار شͺل گیری باعث و مطرح شیͺاگو بورس در ١٩٩٣ سال
از طبیعͬ بلایای خسارات از ناشͬ ریسͷ های خصوص به ریسͷ ها انتقال امͺان است: عمده مشخصه دو دارای مالͬ نو ظهور ابزار این
کمبود جبران و بیمه شرکت های مالͬ تأمین برای راهͬ ثانیاً و ͬ کند م فراهم سرمایه بازار سرمایه گذاران به را اتکایی بیمه و بیمه شرکت های
دارایی ͬ باشد. م سرمایه بازار در سرمایه گذاران مالͬ سبد متنوع سازی برای مناسبی بسیار ابزار طرفͬ از . ͬ کند م ایجاد آنها سرمایه ذخیره
اوراق این که، است ذکر به لازم است. بیمه شرکت توسط شده صادر بیمه نامه های از ناشͬ فاجعه آمیز ͷریس بیمه ای، قرضه اوراق در پایه

مونت کارلو. شبیه سازی بهره، نرخ تصادفͬ مدل فاجعه آمیز، وقایع قرضه اوراق مالͬ، بازار نوین ابزارهای : کلیدی: واژه های
.13D45, 39B42 :[٢٠١٠] موضوعͬ طبقه بندی
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مالͬ بازار های در نو ظهور ابزار های

کشاورزی محصولات رفتن بین از ͷریس یا و میر و مرگ از ناشͬ ریسͷ های برای فاجعه آمیز، حوادثِ ͷریس پوشش بر علاوه ͬ توانند م
صورت در است. فاجعه آمیز حوادث اوراق به مربوط شده، منتشر بیمه ای بهادار اوراق حجم بیشترین اما گیرند. قرار استفاده مورد نیز
بازپرداخت است سرمایه گذار همان که اوراق دارنده زیان به اوراق اصل تمام یا بخش شده اند، طراحͬ آنها خاطر به اوراق که حادثه وقوع
نوین محصول این قیمت گذاری لزوم بیمه، صنعت و سرمایه بازار حوزه دو هر در بیمه ای قرضه اوراق وجود اهمیت به توجه با ͬ شود. نم
برای بپردازیم. بیمه ای قرضه اوراق قیمت گذاری و مدل بندی به تا برانیم پژوهش این در راستا این در ͬ شود. م احساس پیش از بیش
وقایع که فرض این با را اوراق این منصفانه قیمت مختلف، باز پرداخت توابع برای و گرفته نظر در را هو‐لͬ بهره مدل  نرخ منظور این

ͬ یابیم. م را هستند، مالͬ بازا های رفتار از مستقل فاجعه آمیز

آمیز فاجعه اوراق گذاری ٢. قیمت
ͬ کنیم: م تعریف را زیر نماد های بیمه ای قرضه اوراق قیمت گذاری و مدل بندی منظور به بخش این در

تا فیلتریشن ) Ft ،(τi توزیع (تابع ϕi (زمان توقف)، τ براونͬ)، (حرکت Wt ،( t زمان در ͷریس بدون سود لحظه ای (نرخ rt
بدون قرضه اوراق اسمͬ (ارزش Fν ،( ام i فاجعه آمیز رویداد زیان مقدار ) Ui ،( t لحظه تا فاجعه آمیز رویداد های تعداد ) Nt ،( t لحظه
بدون قرضه اوراق (قیمت B(٠, T ) ،( T سر رسید با t لحظه  در بدونکوپن قرضه اوراق (قیمت B(t, T ) سر رسید)، (زمان T کوپن)،
fM (٠, ٠) کوپن)، بدون قرضه اوراق منحنͬ ) PM (٠, T ) بازپرداخت)، (تابع νIBp(T,Fν) ،( T سررسید با صفر لحظه در کوپن
پله ای باز پرداخت تابع تحت قرضه اوراق قیمت ) IBs(٠) بدونکوپن)، قرضه اوراق برای صفر زمان در بازار لحظه ای پیش فروش (نرخ
Q اندازه تحت انتظار مورد (مقدار EQ صفر)، لحظه در تکه ای باز پرداخت تابع تحت قرضه اوراق قیمت ) IBp(٠) صفر)، لحظه در

.( P اندازه تحت انتظار مورد (مقدار EP ،(
عنوان تحت باز پرداخت تابع نوع دو ما مقاله این در ͬ پردازیم. م قرضه اوراق بازپرداخت تابع معرفͬ به بالا نماد های معرفͬ با حال

برابر: ترتیب به بازپرداخت تابع دو این فرمول ͬ گیریم. م نظر در را تکه ای و پله ای باز پرداخت تابع

Fν(١ −
n∑

i=١
wi1Ñ>Ki

),

و

Fν(١ −
n∑

i=١

Ñ ∧Ki − Ñ ∧Ki−١
Ki −Ki−١

),

است. بیمه قرارداد به مربوط ثابت مقادیر wi و Ki ، t لحظه تا زیان ها مجموع Ñt آن در که است.

هو‐ لͬ ٣. مدل
ساختار صورت این در است. شده توصیف یافته) توسعه (مرتون هو‐ لͬ مدل توسط rt ͷریس بدون بهره نرخ ͷدینامی ͬ کنیم م فرض

است: زیر صورت به آن

drt = ϑ(t)d(t) + σdWt,

داریم: ϑ(t) برای و σ > ٠ آن در که
ϑ(t) =

∂fM (٠, t)
∂t

+ σ٢t+ λσ,

است. بازار قیمت ͷریس λ آن در که
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میر ف. حیدری، س.

بͽیریم: نظر در زیر صورت به را ϕ(T ) و کند پیروی هو   ‐لͬ مدل از بهره نرخ ͷدینامی اگر .١ قضیه

ϕ(T ) =
n∑

i=١
wiϕi

برابر ترتیب به تکه ای و پله ای بازپرداخت تابع دو برای صفر زمان در قرضه اوراق قیمت
IBs(٠) = PM (٠, T ) exp(TfM (٠, ٠)− Tr٠)Fν(١ − ϕ(T ))

و
IBp(٠) = PM (٠, T ) exp(TfM (٠, ٠)− Tr٠)FνEP νIBp(T,Fν)

است.

عددی ۴. نتایج
مونت  کارلو سازی شبیه از شده، ارائه قیمت گذاری فرمول های تحلیل و تجزیه و فاجعه آمیز قرضه اوراق قیمت گذاری برای بخش این در
پیچیده ماهیت علیرغم عددی، محاسبات طریق از فاجعه آمیز قرضه اوراق قیمت گذاری امͺان دادن نشان ما اصلͬ هدف ͬ کنیم. م استفاده
فرض و ͬ کنیم م مدل سازی ٣١٫٧١۴٣ پارامتر با همͽن پوآسن فرایند ͷی صورت به را Nt منظور این برای است. شده معرفͬ معادلات
فرض سال ͷی را سر رسید زمان و ͷی برابر اوراق اسمͬ است.ارزش ٠٫٢۶۵۶ و ٠٫٠١٨٧ پارامتر های با وایبل توزیع دارای Ui ͬ کنیم م
به را K٢ و K١ ، K٠ شروع نقاط ͬ گیریم. م نظر در ٠٫١ و ٠٫٠٩۵ ،٠٫٠١۴ مقادیر با پارامتر هایی را r(١) و r٠ ، σ ادامه در ͬ کنیم. م
فاجعه آمیز قرضه اوراق قیمت گذاری با و ͬ دهیم م قرار QHPP−W (٠٫٩۵) و QHPP−W (٠٫٨۵) ، QHPP−W (٠٫٧۵) برابر ترتیب
هر در ͬ گیریم. در نظر م ثابت را دیͽری و ͬ دهیم م تغییر را پارامتر دو یا ͷی سپس ͬ کنیم. م شروع شده داده پارامترهای مجموعه برای

ͬ کنیم. م ایجاد سازی شبیه N = ١٠٠٠٠٠٠ ما آزمایش

K٢ و K١ قراردادن ثابت با آمده بدست نتایج :١ جدول
K٢(QHPP−W ) ٠٫٧۵ ٠٫٨ ٠٫٨۵ ٠٫٩ ٠٫٩۵

قیمت ٠٫۶۶۵١٩٩ ٠٫۶٧۵٠٩٣ ٠٫۶٨۴٧٢٢ ٠٫۶٩٧٣۶ ٠٫٧١٣٧٠٨
K١(QHPP−W ) ٠٫۵ ٠٫۵۵ ٠٫۶ ٠٫۶۵ ٠٫٧

قیمت ٠٫٧١٣٧٠٨ ٠٫٧٢۴۵١٢ ٠٫٧٣۵١۶ ٠٫٧۴۶٨٧٧ ٠٫٧۵٧٧۴۴

نتیجه گیری و ۵. بحث
از ناشͬ خسارات ایران، کشور مانند خیز حادثه وقایع پتانسیل با کشورها برای ویژه به طبیعͬ بلایای و وقایع افزون روز رشد به توجه با
ابزارهای ͷکم به سرمایه بازارهای مالͬ منابع از استفاده بنابراین است. جبران ناپذیر اتکایی بیمه  های و بیمه شرکت های برای بلایا این
توسعه و رشد باعث نتیجه در و بیمه شرکت های ظرفیت افزایش و ͷریس مدیریت باعث سو ͷی از بیمه ای قرضه اوراق شامل مالͬ
که ایران سرمایه بازار سرمایه گذاران مالͬ سبد به را جدیدی ابزار مالͬ، بازار در نوآوری ͷی عنوان به دیͽر سوی از و ͬ شود م بیمه صنعت
به توجه با ͬ شود. م سرمایه بازار های توسعه باعث نتیحه در و کرده اضافه ͬ برند، م رنج دسترس در سرمایه گذاری ابزارهای تنوع عدم از
بررسͬ را هو لͬ مدل سپس و قیمت گذاری ͷریس بدون بهره مدل نرخ از استفاده با ابتدا را قرضه اوراق ما مقاله این در موضوع اهمیت
از استفاده با و گرفته نظر در را خطͬ تکه ای توابع شامل قرضه اوراق بازپرداخت توابع از پیچیده ساختار دو پژوهش این .در نمودیم
جمله، از عددی روش های از نهایت در یافتیم. را فاجعه آمیز قرضه اوراق برای گذاری ارزش فرمول های مارتینگل، قیمت گذاری رویͺرد

نمودیم. استفاده بدست آمده قیمت گذاری فرمول های تحلیل و تجزیه برا ی مونت کارلو شبیه سازی
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مالͬ بازار های در نو ظهور ابزار های
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